Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Evaluating the Bioresistance of Wood-Polymer Composite Based on Recycled Thermoplastics with a Modified Wood Filler and Polymer Matrix

Serhii Kopylov1, Anna Cherkashina1, Krystyna Kryvonos2, Tetyana Chernogor1, Tetiana Sukhanova1, Volodymyr Lebedev2
Affiliation: 
1 National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova St., Kharkiv 61002, Ukraine 2 V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61022, Ukraine himmelsergey@ukr.net
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf424.7 KB
Abstract: 
The article investigates the moisture absorption of wood-polymer composite (WPC) and the development of fungal cultures during its operation. The study aims to identify the optimal WPC composition most resistant to fungal growth, examine the effect of fungal development in relation to WPC water absorption, analyse the impact of absorbed moisture on fungal growth, investigate the influence of polymer matrix and wood filler modifications on fungal colony development, assess the fungal resistance of WPC with a modified polymer matrix and wood filler in comparison with industrial and previously proposed samples and provide a description of climatic impacts on WPC as well as data on fungal colony growth and the correlation between material degradation and fungal culture development.
References: 

[1] Kim, J. K. Recent Advances in the Processing of Wood-Plastic Composites; Springer Science & Business Media: New-York, 2010.
[2] Danchenko, Y.; Kariev, A.; Andronov, V.; Cherkashina, A.; Lebedev, V.; Shkolnikova, T.; Burlutskyi, O.; Kosse, A.; Lutsenko, Y.; Yavorska, D. A Research of Chemical Nature and Surface Properties of Plant Disperse Fillers. East.-Eur. J. Enterp. Technol. 2020, 1(6(103)), 32–41. https://doi.org/10.15587/1729-4061.2020.193383
[3] Danchenko, Y.; Kariev, A.; Lebedev, V.; Barabash, E.; Obizhenko, T. Physic-Mechanical Properties of Composites Based on Secondary Polypropylene and Dispersed of Plant Waste. Mater. Sci. Forum 2020, 1006, 227–232. https://doi.org/10.4028/www.scientific.net/msf.1006.227
[4] Danchenko, Y.; Andronov, V.; Kariev, A.; Lebedev, V.; Rybka, E.; Meleshchenko, R.; Yavorska, D. Research into Surface Properties of Disperse Fillers Based on Plant Raw Materials. East.-Eur. J. Enterp. Technol. 2017, 5(12(89)), 20–26. https://doi.org/10.15587/1729-4061.2017.111350
[5] Lebedev, V.; Tykhomyrova, T.; Litvinenko, I.; Avina, S.; Saimbetova, Z. Design and Research of Eco-Friendly Polymer Composites. Mater. Sci. Forum 2020, 1006, 259–266. https://doi.org/10.4028/www.scientific.net/MSF.1006.259
[6] Lebedev, V.; Tykhomyrova, T.; Filenko, O.; Cherkashina, A.; Lytvynenko, O. Sorption Resistance Studying of Environmentally Friendly Polymeric Materials in Different Liquid Mediums. Mater. Sci. Forum 2021, 1038, 168–174. https://doi.org/10.4028/www.scientific.net/MSF.1038.168
[7] Sokolova, A.; Cherkashyna, M. The Legal Regulation of the Use of Natural Healing Resources: The Theory and Practice of Disputes Resolution. Access Justice East. Eur. 2021, 4, 144–163. https://doi.org/10.33327/ajee-18-4.2-n000065
[8] Lebedev, V.; Cherkashyna, M.; Sokolova, A.; Purys, V. Research of Modified Polyamide Waste agglomerate: Regulatory Issues and Technological Features. Key Eng. Mater. 2024, 988, 99–106. https://doi.org/10.4028/p-si8abm
[9] Miroshnichenko, D.; Cherkashyna, M.; Sokolova, A.; Bogatyrenko, S.; Miroshnychenko, M. Polyamide-Polylactide-Humic Substances Biocomposites Hybrid Modification Sustainable Development Technology. Pet. Coal 2024, 66, 758–766.
[10] Miroshnichenko, D.; Cherkashyna, M.; Sokolova, A.; Shulga, I.; Kravchenko, S.; Gorbunov, K.; Sakun, A.; Zhuha, O.; Lebedev, V. Industrial Technology Development Features of the Stamped Coal Blend Coking. Multidiscip. Sci. J. 2025, 7, e2025009. https://doi.org/10.31893/multiscience.2025009
[11] Herasymenko, V.; Kariev, A.; Balandaieva, L.; Lebedev, V.; Vynohradov, V. Construction Composites Based on Secondary Thermoplastics and Manufacturing Waste. IOP Conf. Ser.: Earth Environ. Sci 2024, 1376, 012011. https://doi.org/10.1088/1755-1315/1376/1/012011
[12] Voronov, A.; Vasylyev, S.; Kohut, A.; Peukert, W. Surface Activity of New Invertible Amphiphilic Polyesters Based on Poly(ethylene glycol) and Aliphatic Dicarboxylic Acids. J. Colloid Interface Sci. 2008, 323, 379–385. https://doi.org/10.1016/j.jcis.2008.04.053
[13] Kohut, A.; Voronov, A.; Voronov, S. Micellization and Adsolubilization of Amphiphilic Invertible Polyesters. Chem. Chem. Technol. 2014, 8, 67–80. https://doi.org/10.23939/chcht08.01.067
[14] Kumar, S.; Maiti, P. Controlled Biodegradation of Polymers Using Nanoparticles and its Applications. RSC. Adv. 2016, 6, 67449–67480. https://doi.org/10.1039/C6RA08641A
[15] Tokiwa, Y.; Kalabiya, B.P.; Ugwu, K.U.; Aiba, S. Biodegradability of Plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. https://doi.org/10.3390/ijms10093722
[16] Ahmed, T.; Shahid, M.; Azim, F.; Rasul, I.; Shah, A.A.; Noman, M.; Hamid, A.; Manzoor, N.; Manzoor, I.; Muhammad, S. Biodegradation of Plastic: Current Scenario and Future Environmental Sustainability Prospects. Environ. Sci. Pollut. Res. Int. 2018, 25, 7287–7298. https://doi.org/10.1007/s11356-018-1234-9
[17] Alshehrey, F. Biodegradation of Synthetic and Natural Plastics by Microorganisms. Appl. Environ. Microbiol. 2017, 5, 8–19. https://doi.org/10.12691/jaem-5-1-2
[18] Arutchelvi, J.; Sudhakar, M.; Arkatkar, A.; Doble, M.; Bhaduri, S.; Uppara, P.V. Biodegradation of Polyethylene and Polypropylene. Indian J. Biotechnol. 2008, 7, 9–22.
[19] Devi, R.S.; Kannan, V.R.; Natarajan, K. Role of Microbes in Plastic Degradation. Environ Waste Manage 2016, 341, 341–370. https://doi.org/10.1201/b19243-13
[20] Iram, D.; Riaz, R.A., Iqbal, R.K. Harnessing Potential Microorganisms for Plastic Degradation. Open J. Environ. Biol. 2019, 4, 007–0015. https://doi.org/10.17352/ojeb.000010
[21] John, N.; Saleem, R. Microbial Biodegradation of Plastics—A Review. AIP Conf. Proc. 2020, 2263, 020003. https://doi.org/10.1063/5.001682
[22] Kopylov, S.O.; Cherkashina, H.M.; Lavrova, I.O.; Chernogor T.Ò. Wood-Polymer Composite from Secondary Thermoplastics with Enhanced Properties. Voprosy khimii i khimicheskoi tekhnologii 2025, 2, 4–10. https://doi.org/10.32434/0321-4095-2025-159-2-4-10
[23] Kopylov, S. ; Cherkashina А.; Bliznyuk, O.; Gorbunov, K.; Petrov, S.; Filenko, O.; Makhonin, M.; Tsereniuk, O. Secondary Thermoplastic Modified Wood-Polymer Composite with Increased Technological, Mechanical and Dielectric Properties. J. Res. Updates Polym. Sci. 2024, 13, 112–121. https://doi.org/10.6000/1929-5995.2024.13.12