| Attachment | Size |
|---|---|
| 1009.82 KB |
[1] Sah, D.; Chitra, N.; Kumar, S. Investigation and Recovery of Copper from Waste Silicon Solar Module. Mater. Chem. Phys. 2022, 296, 127205. https://doi.org/10.1016/j.matchemphys.2022.127205
[2] Chakraborty, N.; Banerjee, J.; Chakraborty, P.; Banerjee, A.; Chanda, S.; Ray, K.; Acharya, K.; Sarkar, J. Green Synthesis of Copper/Copper Oxide Nanoparticles and Their Applications: A Review. Green Chem. Lett. Rev.2022, 15, 187–215. https://doi.org/10.1080/17518253.2022.2025916
[3] Asadi, M.; Rozati, S. M. Optical and Structural Properties of Nanostructured Copper Oxide Thin Films as Solar Selective Coating Prepared by Spray Pyrolysis Method. Mater. Sci.-Pol. 2017, 35, 355–361. https://doi.org/10.1515/msp-2017-0054
[4] Dhaouadi, M. Physical Properties of Copper Oxide Thin Films Prepared by Sol–Gel Spin–Coating Method. Am. J. Phys. 2018, 6, 43. https://doi.org/10.11648/j.ajpa.20180602.13
[5] Prabu, R. D.; Valanarasu, S.; Ganesh, V.; Shkir, M.; AlFaify, S.; Kathalingam, A.; Srikumar, S. R.; Chandramohan, R. An Effect of Temperature on Structural, Optical, Photoluminescence and Electrical Properties of Copper Oxide Thin Films Deposited by Nebulizer Spray Pyrolysis Technique. Mater. Sci. Semicond. Process. 2017, 74, 129–135. https://doi.org/10.1016/j.mssp.2017.10.023
[6] Aghayan, M.; Hussainova, I.; Kirakosyan, K.; Rodríguez, M. A. The Template-Assisted Wet-Combustion Synthesis of Copper Oxide Nanoparticles on Mesoporous Network of Alumina Nanofibers. Mater. Chem. Phys. 2017, 192, 138–146. https://doi.org/10.1016/j.matchemphys.2017.01.068
[7] Akgul, U.; Yildiz, K.; Atici, Y. Effect of Annealing Temperature on Morphological, Structural and Optical Properties of Nanostructured CuO Thin Film. Eur. Phys. J. Plus. 2016, 131, 89. https://doi.org/10.1140/epjp/i2016-16089-3
[8] Mikami, K.; Kido, Y.; Akaishi, Y.; Quitain, A.; Kida, T. Synthesis of CU2O/CuO Nanocrystals and their Application to H2S Sensing. Sensors 2019, 19, 211. https://doi.org/10.3390/s19010211
[9] Wisz, G.; Sawicka-Chudy, P.; Sibiński, M.; Płoch, D.; Bester, M.; Cholewa, M.; Woźny, J.; Yavorskyi, R.; Nykyruy, L.; Ruszała, M. TIO2/CuO/Cu2O Photovoltaic Nanostructures Prepared by DC Reactive Magnetron Sputtering. Nanomaterials 2022, 12, 1328. https://doi.org/10.3390/nano12081328
[10] Immanuel, S.; Aparna, T. K.; Sivasubramanian, R. Graphene–Metal Oxide Nanocomposite Modified Electrochemical Sensors. In Graphene-Based Electrochemical Sensors for Biomolecules; Pandikumar, A.; Rameshkumar, P., Eds.; Elsevier, 2019; pp 113–138. https://doi.org/10.1016/b978-0-12-815394-9.00005-4
[11] Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties, and Applications. Prog. Mater. Sci. 2013, 60, 208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003
[12] Sun, S.; Zhang, X.; Yang, Q.; Liang, S.; Zhang, X.; Yang, Z. Cuprous Oxide (Cu2O) Crystals with Tailored Architectures: A Comprehensive review on Synthesis, Fundamental Properties, Functional Modifications and Applications. Prog. Mater. Sci. 2018, 96, 111–173. https://doi.org/10.1016/j.pmatsci.2018.03.006
[13] Stepniowski, W. J.; Stojadinović, S.; Vasilić, R.; Tadić, N.; Karczewski, K.; Abrahami, S. T.; Buijnsters, J. G.; Mol, J. M. C. Morphology and Photoluminescence of Nanostructured Oxides Grown by Copper Passivation in Aqueous Potassium Hydroxide Solution. Mater. Lett. 2017, 198, 89–92. https://doi.org/10.1016/j.matlet.2017.03.155
[14] Macdonald, T. J.; Clancy, A. J.; Shutt, R. R. C.; Howard, C. A. Phosphorene Nanoribbons for Next-Generation Energy Devices. Joule 2022, 6, 2441–2446. https://doi.org/10.1016/j.joule.2022.09.010
[15] Rheima, A. M.; Anber, A. A.; Abdullah, H. I.; Ismail, A. H. Synthesis of Alpha-Gamma Aluminum Oxide Nanocomposite via Electrochemical Method for Antibacterial Activity. Nano Biomed. Eng. 2020, 13, 1–5. https://doi.org/10.5101/nbe.v13i1.p1-5
[16] Soleymani, F. Analysis of Microstructural Changes, Morphology and Optical Properties of the Surface of Copper Oxide Thin Layers due to Annealing for Use in Optoelectronic Devices. J Adv Mater Eng 2024, 43, 17–28. https://doi.org/10.47176/jame.43.2.1062
[17] Stępniowski, W. J.; Norek, M.; Budner, B.; Michalska-Domańska, M.; Nowak-Stępniowska, A.; Bombalska, A.; Kaliszewski, M.; Mostek, A.; Thorat, S.; Salerno, M.; et al. In-situ Electrochemical Doping of Nanoporous Anodic Aluminum Oxide with Indigo Carmine Organic Dye. Thin Solid Films 2015, 598, 60–64. https://doi.org/10.1016/j.tsf.2015.11.084
[18] Patwary, M. A. M.; Hossain, M. A.; Ghos, B. C.; Chakrabarty, J.; Haque, S. R.; Rupa, S. A.; Uddin, J.; Tanaka, T. Copper Oxide Nanostructured Thin Films Processed by SILAR for Optoelectronic Applications. RSC Adv. 2022, 12, 32853–32884. https://doi.org/10.1039/d2ra06303d
[19] Yun, J.-W.; Ullah, F.; Jang, S.-J.; Kim, D. H.; Nguyen, T. K.; Ryu, K. Y.; Cho, S.; Jang, J. I.; Lee, D.; Park, S.; et al. Ultrasonic-Assisted Spin-Coating: Improved Junction by Enhanced Permeation of a Coating Material within Nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 20025–20031. https://doi.org/10.1021/acsami.8b04516
[20] Zimbovskii, D. S.; Churagulov, B. R. Cu2O and CuO Films Produced by Chemical and Anodic Oxidation on the Surface of Copper Foil. Inorg. Mater. 2018, 54, 660–666. https://doi.org/10.1134/s0020168518070208
[21] Vieillard, J.; Bouazizi, N.; Morshed, M. N.; Clamens, T.; Desriac, F.; Bargougui, R.; Thebault, P.; Lesouhaitier, O.; Derf, F. L.; Azzouz, A. CuO Nanosheets Modified with Amine and Thiol Grafting for High Catalytic and Antibacterial Activities. Ind. Eng. Chem. Res. 2019, 58, 10179–10189. https://doi.org/10.1021/acs.iecr.9b00609
[22] Tavakoli, S.; Kharaziha, M.; Ahmadi, S. Green Synthesis and Morphology Dependent Antibacterial Activity of Copper Oxide Nanoparticles. J Nanostruct 2019, 9, 163–171. https://doi.org/10.22052/jns.2019.01.018
[23] Moëzzi, F.; Hedayati, S. A.; Ghadermazi, A. Ecotoxicological Impacts of Exposure to Copper Oxide Nanoparticles on the Gill of the Swan Mussel, Anodonta cygnea (Linnaeus, 1758). Molluscan Res. 2018, 38, 187–197. https://doi.org/10.1080/13235818.2018.1441591
[24] Chopra, N. R.; Kashyap, N. N.; Kumar, N. A.; Banerjee, N. D. Chemical Synthesis of Copper Oxide Nanoparticles Study of its Optical and Electrical Properties. Int. J. Eng. Res. 2020, 9, IJERTV9IS010160. https://doi.org/10.17577/ijertv9is010160
[25] Wanninayake, A. P.; Gunashekar, S.; Li, S.; Church, B. C.; Abu-Zahra, N. Performance Enhancement of Polymer Solar Cells Using Copper Oxide Nanoparticles. Semicond. Sci. Technol. 2015, 30, 064004. https://doi.org/10.1088/0268-1242/30/6/064004