Enhanced Electrical Properties of Crystalline Silicon Solar Cells Using Copper Oxide Nanoparticles

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Mansour Bayati1, Ammar M. Hamza1, Hanaa K. Egzar1
Affiliation: 
1 Department of Chemistry, College of Science, University of Kufa, Najaf city, Iraq mansourk.ali@uokufa.edu.iq
DOI: 
https://doi.org/10.23939/chcht19.04.664
AttachmentSize
PDF icon full_text.pdf1009.82 KB
Abstract: 
The research aimed to create an electrochemical system that could effectively and affordably produce different-sized and shaped copper oxide nanoparticles. CuO NPs also enhance the efficiency of crystalline silicon solar cells by coating them with copper oxide nanoparticles. Field emission scanning microscopy (FESEM) characterized the CuO NPs, revealing the nanorod morphologies. The presence of pure-phase CuO NPs with a monoclinic structure and an average crystallite size of 9.54 nm was verified by X-ray diffraction (XRD). CuO nanoparticles were shown to exhibit a variety of shapes using transmission electron microscopy (TEM), including platelets and rods. The CuO NPs' excellent purity was validated by an examination using an energy-dispersive X-ray spectroscopy (EDX). The measurements' results show that the efficiency of solar cells coated with CuO NPs (10.43 η at 20 0C) is higher than that of solar cells without coating (9.831η at 20 oC).
References: 

[1] Sah, D.; Chitra, N.; Kumar, S. Investigation and Recovery of Copper from Waste Silicon Solar Module. Mater. Chem. Phys. 2022, 296, 127205. https://doi.org/10.1016/j.matchemphys.2022.127205
https://doi.org/10.1016/j.matchemphys.2022.127205

[2] Chakraborty, N.; Banerjee, J.; Chakraborty, P.; Banerjee, A.; Chanda, S.; Ray, K.; Acharya, K.; Sarkar, J. Green Synthesis of Copper/Copper Oxide Nanoparticles and Their Applications: A Review. Green Chem. Lett. Rev.2022, 15, 187-215. https://doi.org/10.1080/17518253.2022.2025916
https://doi.org/10.1080/17518253.2022.2025916

[3] Asadi, M.; Rozati, S. M. Optical and Structural Properties of Nanostructured Copper Oxide Thin Films as Solar Selective Coating Prepared by Spray Pyrolysis Method. Mater. Sci.-Pol. 2017, 35, 355-361. https://doi.org/10.1515/msp-2017-0054
https://doi.org/10.1515/msp-2017-0054

[4] Dhaouadi, M. Physical Properties of Copper Oxide Thin Films Prepared by Sol-Gel Spin-Coating Method. Am. J. Phys. 2018, 6, 43. https://doi.org/10.11648/j.ajpa.20180602.13
https://doi.org/10.11648/j.ajpa.20180602.13

[5] Prabu, R. D.; Valanarasu, S.; Ganesh, V.; Shkir, M.; AlFaify, S.; Kathalingam, A.; Srikumar, S. R.; Chandramohan, R. An Effect of Temperature on Structural, Optical, Photoluminescence and Electrical Properties of Copper Oxide Thin Films Deposited by Nebulizer Spray Pyrolysis Technique. Mater. Sci. Semicond. Process. 2017, 74, 129-135. https://doi.org/10.1016/j.mssp.2017.10.023
https://doi.org/10.1016/j.mssp.2017.10.023

[6] Aghayan, M.; Hussainova, I.; Kirakosyan, K.; Rodríguez, M. A. The Template-Assisted Wet-Combustion Synthesis of Copper Oxide Nanoparticles on Mesoporous Network of Alumina Nanofibers. Mater. Chem. Phys. 2017, 192, 138-146. https://doi.org/10.1016/j.matchemphys.2017.01.068
https://doi.org/10.1016/j.matchemphys.2017.01.068

[7] Akgul, U.; Yildiz, K.; Atici, Y. Effect of Annealing Temperature on Morphological, Structural and Optical Properties of Nanostructured CuO Thin Film. Eur. Phys. J. Plus. 2016, 131, 89. https://doi.org/10.1140/epjp/i2016-16089-3
https://doi.org/10.1140/epjp/i2016-16089-3

[8] Mikami, K.; Kido, Y.; Akaishi, Y.; Quitain, A.; Kida, T. Synthesis of CU2O/CuO Nanocrystals and their Application to H2S Sensing. Sensors 2019, 19, 211. https://doi.org/10.3390/s19010211
https://doi.org/10.3390/s19010211

[9] Wisz, G.; Sawicka-Chudy, P.; Sibiński, M.; Płoch, D.; Bester, M.; Cholewa, M.; Woźny, J.; Yavorskyi, R.; Nykyruy, L.; Ruszała, M. TIO2/CuO/Cu2O Photovoltaic Nanostructures Prepared by DC Reactive Magnetron Sputtering. Nanomaterials 2022, 12, 1328. https://doi.org/10.3390/nano12081328
https://doi.org/10.3390/nano12081328

[10] Immanuel, S.; Aparna, T. K.; Sivasubramanian, R. Graphene-Metal Oxide Nanocomposite Modified Electrochemical Sensors. In Graphene-Based Electrochemical Sensors for Biomolecules; Pandikumar, A.; Rameshkumar, P., Eds.; Elsevier, 2019; pp 113-138. https://doi.org/10.1016/b978-0-12-815394-9.00005-4
https://doi.org/10.1016/B978-0-12-815394-9.00005-4

[11] Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO Nanostructures: Synthesis, Characterization, Growth Mechanisms, Fundamental Properties, and Applications. Prog. Mater. Sci. 2013, 60, 208-337. https://doi.org/10.1016/j.pmatsci.2013.09.003
https://doi.org/10.1016/j.pmatsci.2013.09.003

[12] Sun, S.; Zhang, X.; Yang, Q.; Liang, S.; Zhang, X.; Yang, Z. Cuprous Oxide (Cu2O) Crystals with Tailored Architectures: A Comprehensive review on Synthesis, Fundamental Properties, Functional Modifications and Applications. Prog. Mater. Sci. 2018, 96, 111-173. https://doi.org/10.1016/j.pmatsci.2018.03.006
https://doi.org/10.1016/j.pmatsci.2018.03.006

[13] Stepniowski, W. J.; Stojadinović, S.; Vasilić, R.; Tadić, N.; Karczewski, K.; Abrahami, S. T.; Buijnsters, J. G.; Mol, J. M. C. Morphology and Photoluminescence of Nanostructured Oxides Grown by Copper Passivation in Aqueous Potassium Hydroxide Solution. Mater. Lett. 2017, 198, 89-92. https://doi.org/10.1016/j.matlet.2017.03.155
https://doi.org/10.1016/j.matlet.2017.03.155

[14] Macdonald, T. J.; Clancy, A. J.; Shutt, R. R. C.; Howard, C. A. Phosphorene Nanoribbons for Next-Generation Energy Devices. Joule 2022, 6, 2441-2446. https://doi.org/10.1016/j.joule.2022.09.010
https://doi.org/10.1016/j.joule.2022.09.010

[15] Rheima, A. M.; Anber, A. A.; Abdullah, H. I.; Ismail, A. H. Synthesis of Alpha-Gamma Aluminum Oxide Nanocomposite via Electrochemical Method for Antibacterial Activity. Nano Biomed. Eng. 2020, 13, 1-5. https://doi.org/10.5101/nbe.v13i1.p1-5
https://doi.org/10.5101/nbe.v13i1.p1-5

[16] Soleymani, F. Analysis of Microstructural Changes, Morphology and Optical Properties of the Surface of Copper Oxide Thin Layers due to Annealing for Use in Optoelectronic Devices. J Adv Mater Eng 2024, 43, 17-28. https://doi.org/10.47176/jame.43.2.1062
https://doi.org/10.47176/jame.43.2.1062

[17] Stępniowski, W. J.; Norek, M.; Budner, B.; Michalska-Domańska, M.; Nowak-Stępniowska, A.; Bombalska, A.; Kaliszewski, M.; Mostek, A.; Thorat, S.; Salerno, M.; et al. In-situ Electrochemical Doping of Nanoporous Anodic Aluminum Oxide with Indigo Carmine Organic Dye. Thin Solid Films 2015, 598, 60-64. https://doi.org/10.1016/j.tsf.2015.11.084
https://doi.org/10.1016/j.tsf.2015.11.084

[18] Patwary, M. A. M.; Hossain, M. A.; Ghos, B. C.; Chakrabarty, J.; Haque, S. R.; Rupa, S. A.; Uddin, J.; Tanaka, T. Copper Oxide Nanostructured Thin Films Processed by SILAR for Optoelectronic Applications. RSC Adv. 2022, 12, 32853-32884. https://doi.org/10.1039/d2ra06303d
https://doi.org/10.1039/D2RA06303D

[19] Yun, J.-W.; Ullah, F.; Jang, S.-J.; Kim, D. H.; Nguyen, T. K.; Ryu, K. Y.; Cho, S.; Jang, J. I.; Lee, D.; Park, S.; et al. Ultrasonic-Assisted Spin-Coating: Improved Junction by Enhanced Permeation of a Coating Material within Nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 20025-20031. https://doi.org/10.1021/acsami.8b04516
https://doi.org/10.1021/acsami.8b04516

[20] Zimbovskii, D. S.; Churagulov, B. R. Cu2O and CuO Films Produced by Chemical and Anodic Oxidation on the Surface of Copper Foil. Inorg. Mater. 2018, 54, 660-666. https://doi.org/10.1134/s0020168518070208
https://doi.org/10.1134/S0020168518070208

[21] Vieillard, J.; Bouazizi, N.; Morshed, M. N.; Clamens, T.; Desriac, F.; Bargougui, R.; Thebault, P.; Lesouhaitier, O.; Derf, F. L.; Azzouz, A. CuO Nanosheets Modified with Amine and Thiol Grafting for High Catalytic and Antibacterial Activities. Ind. Eng. Chem. Res. 2019, 58, 10179-10189. https://doi.org/10.1021/acs.iecr.9b00609
https://doi.org/10.1021/acs.iecr.9b00609

[22] Tavakoli, S.; Kharaziha, M.; Ahmadi, S. Green Synthesis and Morphology Dependent Antibacterial Activity of Copper Oxide Nanoparticles. J Nanostruct 2019, 9, 163-171. https://doi.org/10.22052/jns.2019.01.018

[23] Moëzzi, F.; Hedayati, S. A.; Ghadermazi, A. Ecotoxicological Impacts of Exposure to Copper Oxide Nanoparticles on the Gill of the Swan Mussel, Anodonta cygnea (Linnaeus, 1758). Molluscan Res. 2018, 38, 187-197. https://doi.org/10.1080/13235818.2018.1441591
https://doi.org/10.1080/13235818.2018.1441591

[24] Chopra, N. R.; Kashyap, N. N.; Kumar, N. A.; Banerjee, N. D. Chemical Synthesis of Copper Oxide Nanoparticles Study of its Optical and Electrical Properties. Int. J. Eng. Res. 2020, 9, IJERTV9IS010160. https://doi.org/10.17577/ijertv9is010160
https://doi.org/10.17577/IJERTV9IS010160

[25] Wanninayake, A. P.; Gunashekar, S.; Li, S.; Church, B. C.; Abu-Zahra, N. Performance Enhancement of Polymer Solar Cells Using Copper Oxide Nanoparticles. Semicond. Sci. Technol. 2015, 30, 064004. https://doi.org/10.1088/0268-1242/30/6/064004
https://doi.org/10.1088/0268-1242/30/6/064004