The Effect of Triglyceride Transesterification Catalyst on the Sustainability Indicators

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Yurii Melnyk1, Stepan Melnyk1, Halyna Mahorivska1
Affiliation: 
1 Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine yurii.r.melnyk@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht19.04.705
AttachmentSize
PDF icon full_text.pdf337.26 KB
Abstract: 
The effect of a triglyceride transesterification catalyst on sustainability indicators has been examined. Among the catalysts studied, zinc and nickel (II) oxides proved to be the most effective for triglyceride ethanolysis and butanolysis. The optimal catalyst content of 0.25 wt.% minimizes the E-factor. Increasing the molar ratio of alcohol to triglyceride decreases the E-factor by 3.6 to 8.0 times in triglyceride butanolysis catalyzed by zinc and nickel (II) oxides. It was found that the regeneration of unreacted n-butyl alcohol from the reaction mixture increases atom efficiency by 2.1 to 2.2 times.
References: 

[1] Martinez-Guerra, E.; Gude, V. Assessment of Sustainability Indicators for Biodiesel Production. Appl. Sci. 2017, 7, 869. https://doi.org/10.3390/app7090869
https://doi.org/10.3390/app7090869

[2] Muratov, M.; Kurniawan, T.A.; Eshmetov, R.; Salikhanova, D.; Eshmetov, I. Adizov, B.; Khandamov, D.; Madaminov, B.; Onn, C. W. Promoting Sustainability: Micellization and Surface Dynamics of Recycled Monoethanolamine Surfactants. J. Mol. Liq. 2024, 414, 126010. https://doi.org/ 10.1016/j.molliq.2024.126010
https://doi.org/10.1016/j.molliq.2024.126010

[3] Hájek, M.; Vávra, A.; de Paz Carmona, H.; Kocík, J. The Catalysed Transformation of Vegetable Oils or Animal Fats to Biofuels and Bio-Lubricants. Rev. Catal. 2021, 11, 1118. https://doi.org/10.3390/catal11091118
https://doi.org/10.3390/catal11091118

[4] Živković, S.; Veljković, M. Environmental Impacts of the Production and Use of Biodiesel. Environ. Sci. Pollut. Res. 2017, 25, 191-199. https://doi.org/10.1007/s11356-017-0649-z
https://doi.org/10.1007/s11356-017-0649-z

[5] Konovalov, S.; Patrylak, L.; Zubenko, S.; Okhrimenko, M.; Yakovenko, A.; Levterov, A.; Avramenko, A. Alkali Synthesis of Fatty Acid Butyl and Ethyl Esters and Comparative Bench Motor Testing of Blended Fuels on their Basis. Chem. Chem. Technol. 2021, 15, 105-117. https://doi.org/10.23939/chcht15.01.105
https://doi.org/10.23939/chcht15.01.105

[6] Anastopoulos, G.; Zannikou, Y.; Stamoulis, S.; Kalligeros, S. Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters. Energies 2009, 2, 362-376. https://doi.org/10.3390/en20200362
https://doi.org/10.3390/en20200362

[7] Wang, B.; Wang, B.; Shukla, S.K.; Wang, R. Enabling Catalysts for Biodiesel Production via Transesterification. Catalysts 2023, 13, 740. https://doi.org/10.3390/catal13040740
https://doi.org/10.3390/catal13040740

[8] Bothon, F.T.D.; Montcho, P.S.; Nonviho, G.; Dossa, C.P.A.; Tchiakpe, L.; Adomou, A.A.; Avlessi, F.L. Physicochemical Variability and Biodiesel Potential of Seed Oils of Two Hibiscus sabdariffa L. Phenotypes. ACS Omega 2020, 5, 25561−25567. https://doi.org/10.1021/acsomega.0c01838
https://doi.org/10.1021/acsomega.0c01838

[9] Purwanto, P.; Buchori, L.; Istadi, I. Reaction Rate Law Model and Reaction Mechanism Covering Effect of Plasma Role on the Transesterification of Triglyceride and Methanol to Biodiesel over a Continuous Flow Hybrid Catalytic Plasma Reactor. Heliyon 2020, 6, e05164. https://doi.org/10.1016/j.heliyon.2020.e05164
https://doi.org/10.1016/j.heliyon.2020.e05164

[10] Buchori, L.; Istadi, I.; Purwanto, P. Advanced Chemical Reactor Technologies for Biodiesel Production from Vegetable Oils - A Review. Bull. Chem. React. Eng. Catal. 2016, 11, 406-430. https://doi.org/10.9767/bcrec.11.3.490.406-430
https://doi.org/10.9767/bcrec.11.3.490.406-430

[11] Widayat, W.; Christwardana, M.; Syaiful, S.; Satriadi, H.; Khaibar, A.; Almaki, M.M. Development of Heterogeneous Alkali Methoxide Catalyst from Fly Ash and Limestone. Chem. Chem. Technol. 2020, 14, 521-530. https://doi.org/10.23939/chcht14.04.521
https://doi.org/10.23939/chcht14.04.521

[12] Bahadoran, A.; Ramakrishna, S.; Oryani, B.; Al-Keridis, L.A.; Nodeh, H.R.; Rezania, S. Biodiesel Production from Waste Cooking Oil Using Heterogeneous Nanocatalyst-Based Magnetic Polyaniline Decorated with Cobalt Oxide. Fuel 2022, 319, 123858. https://doi.org/ 10.1016/j.fuel.2022.123858
https://doi.org/10.1016/j.fuel.2022.123858

[13] Buchori, L.; Anggoro, D.D.; Ma'ruf, A. Biodiesel Synthesis from the Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones. Chem. Chem. Technol. 2021, 15, 583-590. https://doi.org/10.23939/chcht15.04.583
https://doi.org/10.23939/chcht15.04.583

[14] Melnyk, Yu.; Starchevskyi, R.; Melnyk, S. Transesterification of Sunflower Oil Triglycerides by 1-Butanol in the Presence of d-Metal Oxides. Vopr. khimii khimicheskoi tekhnologii 2019, 4, 95-100. https://doi.org/10.32434/0321-4095-2019-125-4-95-100
https://doi.org/10.32434/0321-4095-2019-125-4-95-100

[15] Daryono, E. D.; Jimmy; H. Setyawati, H. Production of Biodiesel Without Catalyst Separation with Palm Oil Interesterification Process Using Essential Oil Biocatalyst. Chem. Chem. Technol. 2024, 18, 356-362. https://doi.org/10.23939/chcht18.03.356
https://doi.org/10.23939/chcht18.03.356

[16] Melnyk, Yu. R.; Melnyk, S. R.; Mahorivska, H. Ya. Transesteryfikatsiia tryhlitserydiv roslynnykh olii holovnoiu fraktsiieiu etylovoho spyrtu. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriia: Novi rishennia v suchasnykh tekhnolohiiakh 2021, 1, 72-79. https://doi.org/10.20998/2413-4295.2021.01.11
https://doi.org/10.20998/2413-4295.2021.01.11

[17] Melnyk, Yu.; Melnyk, S.; Mahorivska, H. The Assessment of Sustainability Indicators for Triglycerides Transesterification with Alcohols Catalyzed by Ion Exchange Resins. Pytannia khimii ta khimichnoi tekhnolohii 2023, 4, 58-68. https://doi.org/10.32434/0321-4095-2023-149-4-58-68
https://doi.org/10.32434/0321-4095-2023-149-4-58-68

[18] Melnyk, Y.; Starchevskyi, R.; Melnyk, S. Technological Aspects of Vegetable Oils Transesterication with Ethanol in the Presence of Metal Oxides. Kem. Ind. 2020, 69, 365−370. https://doi.org/10.15255/KUI.2019.059
https://doi.org/10.15255/KUI.2019.059