Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption

Omari Mukbaniani1, 2, Witold Brostow3, Jimsher Aneli2, Levan Londaridze1, 2, Eliza Markarashvili1,2, Tamara Tatrishvili1, 2, Osman Gencel4
1 Department of Macromolecular Chemistry, Ivane Javakhishvili University, Ilia Chavchavadze Blvd. 1, Tbilisi 0179, Georgia 2 Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili University, Ilia Chavchavadze Blvd. 13, Tbilisi 0179, Georgia 3 Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, USA 4 Department of Civil Engineering, College of Engineering, Bartin University, Bartin 74100, Turkey wkbrostow@gmail.com
PDF icon full_text.pdf655.06 KB
Ecologically friendly composites have been made on the basis of wood sawdust and sillylated styrene as the binder. That binder acts simultaneously as a reinforcing agent. The surface structures were studied by a scanning electron microscopy and energy dispersive X-ray microanalysis. The bending strength increases with the increase in temperature from 453 to 493 K at the constant pressure of 15 MPa. Likely we have heterogeneous reactions between active groups of triethoxysilylated styrene and sawdust, which lead to increasing of the spatial (per specific volume) concentration of chemical bonds. Impact viscosity increases in the same temperature range from 14.6 to 25.8 kJ/m2. Water absorption determined after 3 and 24 h varies over a wide range in the function of the composition. The lowest value is 4.1 wt% water after 24 h

[1] Ichazo, M.N.; Albano, C.; Gonzalez, J.; Perera, R.; Candal, M.V. Polypropylene/Wood Flour Composites: Treatments and Properties. Compos. Struct. 2001, 54, 207-214. https://doi.org/10.1016/S0263-8223(01)00089-7
[2] Seung-Hwan, L.; Tsutomu, O. Mechanical and Thermal Flow Properties of Wood Flour–Biodegradable Polymer Composites. J. Appl. Polymer Sci. 2003, 90, 1900-1905. https://doi.org/10.1002/app.12864
[3] Torres, F.G.; Cubillas, M.L. Study of the Interfacial Properties of Natural Fibre Reinforced Polyethylene. Polym. Test. 2005, 24, 694-698. https://doi.org/10.1016/j.polymertesting.2005.05.004
[4] Arrakhiz, F.Z.; Elachaby, M.; Bouhfid, R.; Vaudreuil, S.; Essassi, M.; Qaiss, A. Mechanical and Thermal Properties of Polypropylene Reinforced with Alfa Fiber Under Different Chemical Treatment. Mater. Des. 2012, 35, 318-322. https://doi.org/10.1016/j.matdes.2011.09.023.
[5] Rosa, S.M.L.R.; Santos, E.F.; Ferreira, C.A.; Nachtigall, S.M.B. Studies on the Properties of Rice-Husk Filled PP Composites: Effect of Maleated PP. Mater. Res. 2009, 12, 333-338. https://doi.org/10.1590/S1516-14392009000300014
[6] Poletto, M.; Dettenborn, J.; Pistor, V.; Zeni, M.; Zattera, A.J. Materials Produced from Plant Biomass. Part I: Evaluation of Thermal Stability and Pyrolysis of Wood. Mater. Res. 2010, 13, 375-379. https://doi.org/10.1590/S1516-14392010000300016
[7] Kim, H.S.; Lee, B.H.; Choi, S.W.; Kim, S.; Kim, H.J. The Effect of Types of Maleic Anhydride Grafted Polypropylene (MAPP) on the Interfacial Adhesion Properties of Bio-Flour Filled Polypropylene Composites. Compos. Part A-Appl. Sci. Manuf. 2007, 38, 1473-1482. https://doi.org/10.1016/j.compositesa.2007.01.004
[8] Sain, M.; Suhara, P.; Law, S.; Bouilloux, A. Interface Modification and Mechanical Properties of Natural Fiber Polyolef in Composite Products. J. Reinf. Plast. Compos. 2005, 24, 121-130. https://doi.org/10.1177/0731684405041717
[9] Özmen, N. A Study of the Effect of Acetylation on Hemp Fibres with Vinyl Acetate. BioResources 2012, 7, 3800-3809.
[10] Manikandan Nair, K.C.; Sabu, T.; Groeninckx, G. Thermal and Dynamic Mechanical Analysis of Polystyrene Composites Reinforced with Short Sisal Fibres. Compos. Sci. Technol. 2001, 61, 2519-2529. https://doi.org/10.1016/S0266-3538(01)00170-1
[11] Bachtiar, D.; Sapuan, S.M.; Khalina, A.; Zainudin, E.S.; Dahlan, K.Z.M. Flexural and Impact Properties of Chemically Treated Sugar Palm Fiber Reinforced High Impact Polystyrene Composites. Fibers Polym. 2012, 13, 894-898. https://doi.org/10.1007/s12221-012-0894-1
[12] Venkateshwaran, N.; Peruma, A.E.; Arunsundaranayagam, D. Fiber Surface Treatment and Its Effect on Mechanical and Visco-Elastic Behavior of Banana/Epoxy Composite. Mater. Des. 2013, 47, 151-159. https://doi.org/10.1016/j.matdes.2012.12.001
[13] Kakou, C.A.; Arrakhiz, F.Z.; Trokourey, A.; Bouhfid, R.; Qaiss, A.; Rodrigue, D. Influence of Coupling Agent Content on the Properties of High Density Polyethylene Composites Reinforced with Oil Palm Fibers. Mater. Des. 2014, 63, 641-649. https://doi.org/10.1016/j.matdes.2014.06.044
[14] Singha, A.S.; Raj, R.K. Natural Fiber Reinforced Polystyrene Composites: Effect of Fiber Loading, Fiber Dimensions and Surface Modification on Mechanical Properties. Mater. Des. 2012, 41, 289-297. https://doi.org/10.1016/j.matdes.2012.05.001
[15] Asumani, O.M.L.; Reid, R.G.; Paskaramoorthy, R. The Effects of Alkali Silane Treatment on the Tensile and Flexural Properties of Short Fibre Non-Woven Kenaf Reinforced Polypropylene Composites. Compos. Part A-Appl. Sci. Manuf. 2012, 43, 1431-1440. https://doi.org/10.1016/j.compositesa.2012.04.007
[16] Merkel, K.; Rydarowski, H.; Kazimierczak, J.; Bloda, A. Processing and Characterization of Reinforced Polyethylene Composites Made with Lignocellulosic Fibres Isolated from Waste Plant Biomass such as Hemp. Compos. Part B-Eng. 2014, 67, 138-144. https://doi.org/10.1016/j.compositesb.2014.06.007
[17] Nekkaa, S.; Guessoum, M.; Benamara, R.; Haddaoui, N. Influence of Surface Flour Treatment on the Thermal, Structural and Morphological Properties of Polypropylene/Spartium Junceum Flour Composites. Polym. Plast. Technol. Eng. 2013, 52, 175-181. https://doi.org/10.1080/03602559.2012.734363
[18] Xie, Y.; Callum, A.S.H.; Xiao, Z.; Holger, M.; Carsten, M. Silane Coupling Agents Used for Natural Fiber/Polymer Composites: A Review. Compos. Part A-Appl. Sci. Manuf. 2010, 41, 806-819. https://doi.org/10.1016/j.compositesa.2010.03.005
[19] Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Dufresne, A. Short Natural Fibre Reinforced Polyethylene and Natural Rubber Composites: Effect of Silane Coupling Agents and Fibres Loading. Compos. Sci. Technol., 2007, 67, 1627-1639. https://doi.org/10.1016/j.compscitech.2006.07.003
[20] Boussehel, H. Influence of 3-(Trimethoxysilyl) Propyl Methacrylate Coupling Agent Treatment of Olive Pomace Flour Reinforced Polystyrene Composites. Rev. Compos. Mater. Av. 2019, 29, 375-380. https://doi.org/10.18280/rcma.290606
[21] Pugh, C.; Jana, S.C.; Swanson, N.; Raut, P.; Albehaijan H. Polybutadiene Graft Copolymers as Coupling Agents for Carbon Black and Silica Dispersion in Rubber Compounds. U.S. Patent US 2017/0298166 A1, Oct. 19, 2017.
[22] Guy, L.; Pevere, V.; Vidal, T. Use of a Specific Functionalised Organosilicon Compound as a Coupling Agent in an Isoprene Elastomer Composition Including a Reinforcing Inorganic Filler. U.S. Patent US20120225233A1, March 17, 2015.
[23] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. PhD Thesis, Akron University, USA, 2016.
[24] Titvinidze, G.; Tatrishvili, T.; Mukbaniani, O. Chemical Modification of Styrene with Vinyl Containing Organosiloxane via Friedel-Crafts Reactions. Abstracts of Communications of International Conference Enikolopov’s Readings, Erevan, Armenia, 4-7 October, 2006; p. 74.
[25] Grigoriev, A.P.; Fedotova O. Ya. Laboratornyi Praktikum po Tekhnologii Plasticheskikh Mass, v dvuh chastyakh. Chast 2. Polikondensatsionnyie i Khimicheski Modifitsirovannyie Plasticheskie Massy; Vysshaya shkola: Moskva, 1977.
[26] Mineev, V.N.; Mineev, A.V. Viscosity of Metals Under Shock-Loading Conditions. J. Phys. IV France 1997, 7, C3-583 – C3-585; https://doi.org/10.1051/jp4:19973100
[27] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon During Drop Impact Testing and its Simple Dynamics Model. World J. Mech. 2015, 5(3), 33-41. https://doi.org/10.4236/wjm.2015.53004
[28] Mukbaniani, O.; Brostow, W.; Hagg Lobland, H.E.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Dzidziguri, D.; Buzaladze, G. Composites Containing Bamboo with Different Binders. Pure & Appl. Chem. 2018, 90, 1001-1009. https://doi.org/10.1515/pac-2017-0804
[29] Mukbaniani, O.; Brostow, W.; Aneli, J.; Markarashvili, E.; Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym. Adv. Technol. 2020, 31, 1-8. https://doi.org/10.1002/pat.4965
[30] Brostow, W.; Hagg Lobland, H.E.; Hong, H.J.; Lohse, S.; Osmanson, A.T. Flexibility of Polymers Defined and Related to Dynamic Friction. J. Mater. Sci. Res. 2019, 8 (3), 31-35. https://doi.org/10.5539/jmsr.v8n3p31
[31] Brostow, W.; Fałtynowicz, H.; Gencel, O.; Grigoriev, A.; Hagg Lobland, H.E.; Zhang, D. Mechanical and Tribological Properties of Polymers and Polymer-Based Composites. Chem. Chem. Technol. 2020, 14, 514-520. https://doi.org/10.23939/chcht14.04.514
[32] Brostow, W.; Hagg Lobland, H.E. Materials: Introduction and Applications. John Wiley & Sons, 2017.
[33] Hashim, R.; Nadhari, W.N.A.W.; Sulaiman, O.; Kawamura, F.; Hiziroglu, S.; Sato, M.; Sugimoto, T.; Seng, T.G.; Tanaka, R. Characterization of Raw Materials and Manufactured Binderless Particleboard from Oil Palm Biomass. Mater. Des. 2011, 32, 246-254. https://doi.org/10.1016/j.matdes.2010.05.059
[34] Kalogeras, I.M.; Hagg Lobland, H.E. The Nature of the Glassy State: Structure and Transitions. J. Mater. Educ. 2012, 34, 69-94.
[35] Iulianelli, G.; Bruno Tavares, M.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225. https://doi.org/10.23939/chcht04.03.225
[36] Brostow, W.; Menard, K.P.; Menard, N. Combustion Properties of Several Species of Wood. Chem. Chem. Technol. 2009, 3, 173. https://doi.org/10.23939/chcht03.03.173
[37] Pyshev, S.; Miroshnichenko, D.; Malik, I.; Bautista Contreras, A.; Hassan, N.; Abd ElRasoul, A. State of the Art in the Production of Charcoal: a Review. Chem. Chem. Technol. 2021, 15, 61-73. https://doi.org/10.23939/chcht15.01.061
[38] Brostow, W.; Gonçalez, V.; Perez, J.M.; Shipley, S.C. Wetting Angles of Molten Polymers on Thermoelectric Solid Metal Surfaces. J. Adhes. Sci. Technol. 2020, 34, 1163-1171. https://doi.org/10.1080/01694243.2019.1701893