Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane

Omar Mukbaniani1,2, Jimsher Aneli2, Tamara Tatrishvili1,2 Eliza Markarashvili1,2, Levan Londaridze2, Nikoloz Kvinikadze1,2, Lizi Kakalashvili2
1 Ivane Javakhishvili’ Tbilisi State University, Department of Macromolecular Chemistry, I. Chavchavadze Ave., 1, Tbilisi 0179, Georgia. 2 Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, University St., 13, Tbilisi 0186, Georgia. tamar.tatrishvili@tsu.ge
PDF icon full_text.pdf909.54 KB
Today obtaining environmentally friendly wood composite materials is one of the main tasks. The urea-, phenol-, and melamine-formaldehyde resins used today are harmful to the human body and have a long-lasting effect. Therefore, replacing these and other resins with safe binders is one of the major problems. The aim of the work was to obtain and research ecologically safe wood polymer composites-deckings based on a new environmentally safe binder and a reinforcing agent triethoxy(vinylphenethyl)silane and styrene (in-situ polymerization) with a pine sawdust filler and aluminum hydroxide as an antioxidant. On the basis of triethoxy(vinylphenethyl)silane, styrene, and sawdust, the wood polymer composites – deckings have been obtained by hot pressing method at different temperatures and ratios of used components in the presence of antioxidant. For deckings surface, a morphological examination using optical microscopy, scanning electron microscopic (SEM), and energy-dispersive X-ray roentgenographic microanalysis were performed. Water absorption, softening temperature (Vicat), strength on bending, and impact viscosity were determined. Besides, using sawdust as coupling and reinforcement agents, and aluminum hydroxide as an antioxidant, wood polymer composites (WPC) were obtained by hot pressing at different tempe¬ratures. For the obtained composites, the morphological study of the surface was carried out using optical micro¬scopy and scanning electron microscopy, energy disper¬sive X-ray microanalysis. Water absorption of compo¬sites, bending yield stress, impact strength, and softening temperature were determined by the Vicat method. The obtained composites were characterized by higher phy-sicomechanical properties and water absorption.

[1] Morrell, J.J. Wood-Based Building Components: What Have We Learned? Int. Biodeterior. Biodegradation 2002, 49, 253-258. https://doi.org/10.1016/S0964-8305(02)00052-5

[2] Hristov, V.N.; Lach, R.; Grellmann, W. Impact Fracture Behavior of Modified Polypropylene/Wood Fiber Composites. Polym. Test. 2004, 23, 581-589. https://doi.org/10.1016/j.polymertesting.2003.10.011

[3] Nygard, P.; Tanem, B.S.; Karlsen, T.; Brachet, P.; Leinsvang, B. Extrusion-Based Wood Fibre-PP Composites: Wood Powder and Pelletized Wood Fibres - A Comparative Study. Compos. Sci. Technol. 2008, 68, 3418-3424. https://doi.org/10.1016/j.compscitech.2008.09.029

[4] Colom, X.; Carrasco, F.; Pagès, P.; Cañavate, J. Effect of Different Treatments on the Interface of HDPE/Lignocellulosic Fiber Composites. Compos. Sci. Technol. 2003, 63, 161-169. https://doi.org/10.1016/S0266-3538(02)00248-8

[5] Iulianelli, G.; Tavares, M.B.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225-229. https://doi.org/10.23939/chcht04.03.225

[6] Park, J.T.; Seo, J.A.; Ahn, S.H.; Kim, J.H.; Kang, S.W. Surface Modification of Silica Nanoparticles with Hydrophilic Polymers. J. Ind. Eng. Chem. 2010, 16, 517-522. https://doi.org/10.1016/j.jiec.2010.03.030

[7] Sun, X.L.; Fan, Z.P.; Zhang, L.D.; Wang, L.; Wei, Z.J.; Wang, X.Q.; Liu, W.L. Superhydrophobicity of Silica Nanoparticles Modified with Polystyrene. Appl. Surf. Sci. 2011, 257, 2308-2312. https://doi.org/10.1016/j.apsusc.2010.09.094

[8] Hou, W.; Wang, Q. Wetting Behavior of a SiO2-Polystyrene Nanocomposite Surface. J. Colloid Interface Sci. 2007, 316, 206-209. https://doi.org/10.1016/j.jcis.2007.07.033

[9] Tianbin, W.; Yangchuan, K. Preparation of Silica-PS Composite Particles and their Application in PET. Eur. Polym. J. 2006, 42, 274-285. https://doi.org/10.1016/j.eurpolymj.2005.08.002

[10] Morales, G.; van Grieken, R.; Martín, A.; Martínez, F. Sulfonated Polystyrene-Modified Mesoporous Organosilicas for Acid-Catalyzed Processes. Chem. Eng. J. 2010, 161, 388-396. https://doi.org/10.1016/j.cej.2010.01.035

[11] Dey, P.; Rajora, V.K.; Jassal, M.; Agrawal, A.K. A Novel Route for Synthesis of Temperature Responsive Nanoparticles. J. Appl. Polym. Sci. 2011, 120, 335-344. https://doi.org/10.1002/app.33133

[12] Liu, P.; Su, Z. Preparation of Polystyrene Grafted Silica Nanoparticles by Two-Steps UV Induced Reaction. J. Photochem. Photobiol. A. 2004, 167, 237-240. https://doi.org/10.1016/j.jphotochem.2004.05.030

[13] Pérez, L.D.; López, J.F.; Orozco, V.H.; Kyu, T.; López, B.L. Effect of the Chemical Characteristics of Mesoporous Silica MCM‐41 on Morphological, Thermal, and Rheological Properties of Composites Based on Polystyrene. J. Appl. Polym. Sci. 2009, 111, 2229-2237. https://doi.org/10.1002/app.29245

[14] Maas, J.H.; Cohen Stuart, M.A.; Sieval, A.B.; Zuilhof, H.; Sudhölter, E.J.R. Preparation of Polystyrene Brushes by Reaction of Terminal Vinyl Groups on Silicon and Silica Surfaces. Thin Solid Films 2003, 426, 135-139. https://doi.org/10.1016/S0040-6090(03)00033-6

[15] Liu, P.; Liu, W.M.; Xue, Q.J. In Situ Radical Transfer Addition Polymerization of Styrene from Silica Nanoparticles. Eur. Polym. J. 2004, 40, 267-271. https://doi.org/10.1016/j.eurpolymj.2003.10.003

[16] Chevigny, C.; Gigmes, D.; Bertin, D.; Jestin, J.; Boue, F. Polystyrene Grafting from Silica Nanoparticles via Nitroxide-Mediated Polymerization (NMP): Synthesis and SANS Analysis with the Contrast Variation Method. Soft Matter. 2009, 5, 3741-3753. https://doi.org/10.1039/B906754J

[17] Laruelle, G.; Parvole, J.; Francois, J.; Billon, L. Block Сopolymer Rafted-Silica Particles: A Core/Double Shell Hybrid Inorganic/Organic Material. Polymer 2004, 45, 5013-5020. https://doi.org/10.1016/j.polymer.2004.05.030

[18] Liu, C.-H.; Pan, C.-Y. Grafting Polystyrene onto Silica Nanoparticles via RAFT Polymerization. Polymer 2007, 48, 3679-3685. https://doi.org/10.1016/j.polymer.2007.04.055

[19] Wang, Y.-P.; Pei, X.-W.; He, X.-Y.; Yuan, K. Synthesis Of Well-Defined, Polymer-Grafted Silica Nanoparticles via Reverse ATRP. Eur. Polym. J. 2005, 41, 1326-1332. https://doi.org/10.1016/j.eurpolymj.2004.12.010

[20] Bratychak, M.; Bratychak, M. Jr.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Etherate. Mater. Res. Innov. 2002, 6, 24-30. https://doi.org/10.1007/s10019-002-0157-7

[21] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073

[220] Hubner, E.; Allgaier, J.; Meyer, M.; Stellbrink, J.; Pyckhout-Hintzen, W.; Richter, D. Synthesis of Polymer/Silica Hybrid Nanoparticles Using Anionic Polymerization Techniques. Macromolecules 2009, 43, 856-867. https://doi.org/10.1021/ma902213p

[23] Nguyen, M.N.; Bressy, C.; Margaillan, A. Synthesis of Novel Random and Block Copolymers of tert-Butyldimethylsilyl Methacrylate and Methyl Methacrylate by RAFT Polymerization. Polymer 2009, 50, 3086-3094. https://doi.org/10.1016/j.polymer.2009.04.075

[24] Agudelo, N.A.; Perez, L.D.; Lopez. B.L. A Novel Method for the Synthesis of Polystyrene-Graft-Silica Particles Using Random Copolymers Based on Styrene and Triethoxyvinylsilane. Appl. Surf. Sci. 2011, 257, 8581-8586. https://doi.org/10.1016/j.apsusc.2011.05.021

[25] Kvinikadze, N.; Londaridze, L; Zedgenidze, A.; Dzidziguri, D.; Mukbaniani, O. Wood Polymer Composites on the Basis of New Coupling Agent. Abstracts of Communications of 7th International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, 2021, 27-30 July, p. 60. https://icsp7.tsu.ge/data/file_db/icsp7/abstracts_21.07icsp7.pdf

[26] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, Akron University, USA, 2016.

[27] Essential Testing of Flexural Properties of Plastics and Polymers. ISO 178, 2019.

[28] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33-41. https://doi.org/10.4236/wjm.2015.53004

[29] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani. O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201-209. https://doi.org/10.23939/chcht11.02.201

[30] Aneli, J.; Mukbaniani, O.; Markarashvili, E.; Zaikov, G.; Klodzinska, E. Polymer Composites on the Basis of Epoxy Resin with Mineral Fillers Modified by Tetraetoxysilane. Chem. Chem. Technol. 2013, 67, 141-145. https://doi.org/10.23939/chcht07.02.141

[31] Mukbaniani, O.; Brostow, W.; Hagg Lobland, H.E.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Dzidziguri, D.; Buzaladze, G. Composites Containing Bamboo with Different Binders. Pure Appl. Chem. 2018, 90, 1001-1009. https://www.degruyter.com/ document/doi/10.1515/pac-2017-0804/html

[32] Mukbaniani, O.; Brostow, W.; Aneli, J.; Markarashvili, E. Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym. Adv. Technol. 2020, 31, 2504-2511. https://doi.org/10.1002/pat.4965

[33] Fernández-Jiménez, A.; Palomo. A. Mid-Infrared Spectroscopic Studies of Alkali-Activated Fly Ash Structure. Microporous Mesoporous Mater. 2005, 86, 207-214. https://doi.org/10.1016/j.micromeso.2005.05.057

[34] Mukherjee, S.; Srivastava, S.K. Minerals Transformations in Northeastern Region Coals of India on Heat Treatment. Energy Fuels 2006, 20, 1089-1096. https://doi.org/10.1021/ef050155y
[35] Kalogeras, I.M.; Hagg Lobland, H.E. The Nature of the Glassy State: Structure and Transitions. J. Mater. Ed. 2012, 34, 69-94.