Tnt-based sulfonated polynaphthylimides useful as proton exchange membranes for fuel cells (pemfcs)

Alexander Rusanov1, Vladimir Tartakovskiy2, Elena Bulycheva2, Margarita Bugaenko2, Jean-Yves Sanchez3, Cristina Iojoiu3, Vanda Voytekunas4,5 and Marc J.M. Abadie5,6
1 A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences - INEOS RAN, 28 Vavilov str., 119991 Moscow GSP-1., Russia 2 Zelinsky Institute of Organic Chemistry of Russian Academy of Science - IOCh, Moscow, Russia, 119991 Moscow GSP-1., Russia 3 LEPMI ENSEEG, UMR 5631 CNRS, INPG, UJF, Domaine Universitaire, 1130 Rue de la Piscine, BP 75, 38402 Saint Martin d’Heres Cedex., France 4 Singapore Institute of Manufacturing Technology - SIMTech, 71 Nanyang Drive, Singapore 638075 5 Laboratory of Polymer Science & Advanced Organic Materials LEMP/MAO, CC 021, Universite Montpellier II, Sciences et Techniques du Languedoc, Place Eugene Bataillon, 34095 Montpellier cedex 05, France 6 School of Materials Science & Engineering, Block N4.1, Level 1, Room # 15, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798, Singapore;
PDF icon full_text.pdf95.07 KB
PEMFC Fuel Cell uses a polymer membrane as an electrolyte. It is used in all applications with dynamic loads, especially in mobile applications but also as combined heat and power units in households. The development of the membranes ion-conductivity has much increased over the last 30 years. Today “Nafion”-based membranes achieve a power density up to 1 W/cm² active area. In the last 10 years the successful adoption of the PEMFC in different prototypes could be demonstrated. For a market-introduction a few “teething problem” like life-time and costs have to be solved. In this context scientists have high expectations in the development of high-temperature membranes. Cells with these temperatures can be operated over 373 K. Regarding our investigations on the synthesis of aromatic condensation monomers and polymers based on 2,4,6-trinitrotoluene (TNT) we have developed new side-chain-sulfonated aromatic diamines (SCSADAs) and polymers there from. Generally these diamines are prepared using multistep synthetic procedures; as a result they are expensive and unavailable. Our approach shows that the acidic groups on the pendant phenyl groups are more stable to hydrolysis than those with acidic groups directly attached to the main chains. Acidified polymers are stable up to 423 K.

[1] Lasseques J.: [in:] Colombon P. (Ed.), Proton Conductors: Solids, Membranes and Gels. University Press, Cambridge 1992.

[2] Watkins S.: [in:] Blumen L. and Mugerwa M. (Eds.), Fuel Cell Systems. Plenum, New York 1993.

[3] Zawodzinski T., Derouin C., Radzinski S. et al.: J. Electrochem. Soc., 1993, 140, 1041.

[4] Kordesch K. and Simander G.: Fuel Cells and Their Applications. Wiley-VCH, Weinheim 1996.

[5] Savadogo O.: J. New Mater. Electrochem. Syst., 1998, 1, 66.

[6] Rusanov A., Likhatchev D. and Muellen K.: Russ. Chem. Revs., 2002, 71, 761.

[7] Rusanov A., Likhatchev D., Kostoglodov P. et al.: Adv. Polym. Sci., 2005, 197, 83.

[8] Dobrovol'skii Yu., Volkov E., Pisareva A. et al.: Russ. J. Gen. Chem., 2007, 77, 766.

[9] Dobrovol'skii Yu., Jannasch P., Lafitte B. et al.: Russ. J. Electrochem., 2007, 43, 489.

[10] Rusanov A., Solodova E., Bulycheva E. et al: Russ. Chem. Revs., 2007, 76, 1073.

[11] Yin Y., Yamada O., Tanaka K. and Okamoto K.-I.: Polymer, 2006, 38, 197.

[12] Rusanov A., Bulycheva E., Bugaenko M. et al.: Russ. Chem. Revs., 2009, 78, 56.

[13] Yin Y., Fang J., Cui Y. et al.: Polymer, 2003, 44, 4509.

[14] Yin Y., Fang J., Watari T. et al.: J. Mater. Chem., 2004, 14, 1062.

[15] Yin Y., Yamada O., Suto Y. et al.: J. Polym. Sci. Polym. Chem., 2005, 42, 1545.

[16] Hu Z., Yin Y., Chen S. et al.: J. Polym. Sci. Polym. Chem., 2006, 44, 2862.

[17] Chen S., Yin Y., Tanaka K. et al.: Polymer, 2006, 47, 2660.

[18] Miyatake K., Oyaizu K., Tsuchida E. and Hay A.: Macromolecules, 2001, 34, 2065.

[19] Miyatake K., Chikashige Y. and Watanabe M.: Macromolecules, 2003, 36, 9691.

[20] Rusanov A., Komarova L., Likhachev D. et al.: Russ. Chem. Revs., 2003, 72, 899.

[21] Rusanov A., Komarova L., Tartakovskiy V. and Shevelev S.: [in:] Matsumoto T. (Ed.), Recent Progress in Polycondensation. Research Signpost, Trivandrum, India 2002.

[22] Abadie M., Rusanov A., Komarova L. and Voytekunas V.: [in:] Practical Guide to Polyimides. RAPRA, Shawbury, UK 2007.

[23] Garner W. and Albernety C.: Proc. Chem. Soc., 1921, 99, 213.

[24] Shevelev S., Dutov M., Vatsadze I. et al.: Russ. Chem. Bull., 1995, 44, 384.

[25] Shevelev S., Dutov M., Vatsadze I. et al.: Mendeleev Commun., 1996, 155.

[26] Shevelev S., Dutov M. and Serushkina O.: Russ. Chem. Bull., 1995, 44, 2424.

[27] Rusanov A., Prigozhina M., Komarova L. et al.: Polymer Sci., 1999, 41, 65.

[28] Korshak V., Bulycheva E., Shifrina Z. et al.: Acta Polymerica, 1988, B39, 460.

[29] Sek D., Pijet P. and Wanic A.: Polymer, 1992, 33, 190.

[30] Genes C., Mercier R., Sillion B. et al.: Polymer, 2001, 42, 359.

[31] Chen S., Yin Y., Tanaka K.: Polymer, 2006, 47, 2660.

[32] Miyatake K., Yasuda T., Hirai M. et al.: J. Polymer Sci. Polymer Chem., 2007, 45, 157.

[33] Li Y., Jin R., Wong Z. et al.: J. Polym. Sci. Polym. Chem., 2007, 45, 222.

[34] Araujo S., Likhachev D., Rusanov A. et al.: J. Polym. Sci. Polym. Chem., 2008, A50, 1493.

[35] Ishida H., Wellinghoff S., Baer E. and Koenig J.: Macromolecules, 1980, 13, 826.

[36] Ishida H. and Huang M.: Spectrochem. Acta, 1995, 51, 319.

[37] Kardash I., Likhachev D., Krotovich M. et al.: Vysokomol. Soed., 1987, 29, 1364.

[38] Snyder R., Thomson B., Bartges B. et al.: Macromolecules, 1989, 22, 4166.

[39] Bellami L.: Infrared Spectra of Complex Molecules. 1963.

[40 Einsla B., Hong Y., Kim Y. et al.: J. Polym. Sci. Polym. Chem., 2004, 42, 862.