Thermodynamic Properties of 2-Methyl-5-arylfuran-3 Carboxylic Acids Chlorine Derivatives in Organic Solvents

Iryna Sobechko1, Yuri Horak2, Volodymyr Dibrivnyi1, Mykola Obushak2, Lubomyr Goshko1
Affiliation: 
1 Lviv Polytechnic National University, 12, Bandery St., 79013 Lviv, Ukraine 2 Ivan Franko National University of Lviv, 6, Kyryla i Mefodiya St. 79005 Lviv, Ukraine phys.chem.lp@gmail.com
DOI: 
https://doi.org/10.23939/chcht13.03.280
AttachmentSize
PDF icon full_text.pdf319.47 KB
Abstract: 
The temperature dependences of the solubility of 2-methyl-5-(2-chloro-5-trifluoromethylphenyl)-furan-3-carboxylic acid and 2-methyl-5-(2,5-dichlorophenyl)-furan-3-carboxylic acid in acetonitrile, dimethyl ketone, isopropanol and ethyl acetate have been experimentally determined. The enthalpies of fusion of the investigated substances, as well as their enthalpies and entropies of mixing at 298 K have been calculated. The dependence of the saturated solution concentration on the values of enthalpy and entropy of solubility at 298 K has been determined. The compensating effect of mixing the investigated acids with all solvents containing the carbonyl group has been established.
References: 

[1] Gandini A., Belgacem M.: Prog. Polym. Sci., 1997, 22, 1203. https://doi.org/10.1016/S0079-6700(97)00004-X
[2] Karateev A., Koryagin A., Litvinov D. et al.: Chem. Chem. Technol., 2008, 2, 19.
[3] Shivarama Holla B., Akberali P., Shivananda M.: Farmaco. 2000, 55, 256. https://doi.org/10.1016/S0014-827X(00)00030-6
[4] Subrahmanya K., Shivarama Holla B.: Heterocyc. Commun., 2003, 9, 625. https://doi.org/10.1515/hc.2003.9.6.625
[5] Williams D., Lee M.-R., Song Y.-A. et al.: J. Am. Chem. Soc., 2007, 129, 9258. https://doi.org/10.1021/ja072817z
[6] Moya-Garzón M., Higueras M., Peñalver C. et al.: J. Med. Chem., 2018, 61, 7144. https://doi.org/10.1021/acs.jmedchem.8b00399
[7] Denton T., Srivastava P., Xia Z. et al.: J. Med. Chem., 2018, 61, 7065. https://doi.org/10.1021/acs.jmedchem.8b00084
[8] Duffy J., Kirk B., Kevin N. et al.: Bioorg. Med. Chem. Lett., 2003, 13, 3323. https://doi.org/10.1016/S0960-894X(03)00680-2
[9] Chen M., Yu Q., Sun H.: Int. J. Mol. Sci., 2013, 14, 18488. https://doi.org/10.3390/ijms140918488
[10] Martins A., Facchi S., Follmann H. et al.: Int. J. Mol. Sci., 2014, 15, 20800. https://doi.org/10.3390/ijms151120800
[11] Chethan P., Vishalakshia B., Sathish L. et al.: Int. J. Biol. Macromol., 2013, 59, 158. https://doi.org/10.1016/j.ijbiomac.2013.04.045
[12] Sobechko I., Van-Chin-Syan Yu., Gorak Yu. et al.: Rus. J. Phys. Chem., 2015, 89, 919. https://doi.org/10.1134/S003602441506028X
[13] Sobechko I., Dibrivnyi V., Horak Y. et al.: Chem. Chem. Technol., 2017, 11, 397. https://doi/org/10.23939/chcht11.04.397
[14] Sobechko I.: Voprosy Khim. Khim. Technol., 2014, 5-6, 48.
[15] Marshalek A., Sobecjko I., Gorak Yu. et al.: Voprosy Khim. Khim. Technol., 2017, 1, 18.
[16] Sobechko I., Gorak Yu., Van-Chin-Syan Yu. et al.: Izv. Vysshikh Ucheb. Zaved., 2015, 58, 45.
[17] Sobechko I., Chetverzhuk Y., Horak Y. et al.: Chem. Chem. Technol., 2017, 11, 131. https://doi/org/10.23939/chcht11.02.131
[18] Chemistry Web-book. http://webbook.nist.gov (March 18th, 2015)
[19] Sobechko I., Prokop R., Gorak Yu. et al.: Vopr. Khim. Khim. Technol., 2013, 4, 12.
[20] Kochubei V., Horak Yu., SObechko I. et al.: Visnyk Lviv. Univ., 2015, 56, 301.