THERMAL STABILITY OF ORGANIC-INORGANIC COMPOSITES BASED ON DIMETHACRYLATE-TETRAETHOXYSILANE SYSTEM

Galyna Khovanets’ 1, Оlena Makido1, Viktoria Kochubei2, Тetyana Sezonenko1, Yuriy Medvedevskikh1, Vladyslav Voloshynets2
Affiliation: 
1 Department of Physical Chemistry of Fossil Fuels InPOCC National Academy of Sciences of Ukraine, 3а, Naukova St., 79060 Lviv, Ukraine 2 Lviv Polytechnic National University, 12, S. Bandera St., 79013 Lviv, Ukraine khovanets_galyna@ukr.net
DOI: 
https://doi.org/10.23939/chcht11.02.158
AttachmentSize
PDF icon full_text.pdf204.13 KB
Abstract: 
The influence of composition of hybrid organic-inorganic composites based on oligoesteracrylate (MGF-9)−tetraethoxysilane (TEOS) system on their thermal properties and molecular structure was investigated. Thermograms and curves of thermal destruction of samples were obtained, from which temperature ranges, weight loss of samples and thermal effects of each stage were defined. It is shown that introducing an inorganic filler into polymer matrix promotes increasing of thermal stability of the material. Values of characteristic parameters of studied organic-mineral composites were calculated as the result of thermomechanical analysis of obtained curves. The composite MGF-9:TEOS = 90:10 (vol %) was found to have the maximal thermal resistance and improved thermomechanical properties.
References: 

[1] Shilova О., Shilov V.: Nanosistemy, Nanomaterialy, Nanotekhnolohii: Sbornik Nauchnykh Rabot. Akademperiodika, 2003, 1, 9.

[2] Poole C., Owens F.: Nanotechnolohii. Tekhnosfera, Moskow 2006. [3] Revo S., Avramenko T., Boshko O. et al.: Polimernyi Zh., 2013, 35, 186.

[4] Zou H., Wu S., Shen J.: Chem. Rev., 2008, 108, 3893. https://doi.org/10.1021/cr068035q
https://doi.org/10.1021/cr068035q

[5] Li C., Wu J., Zhao J. et al.: Eur. Polym. J., 2004, 40, 1807. https://doi.org/10.1016/j.eurpolymj.2004.04.011
https://doi.org/10.1016/j.eurpolymj.2004.04.011

[6] Теytelbaum B.: Теrmomekhanicheskiy Analiz Polimerov. Nauka, Moskow 1979.

[7] Zakordonskiy V., Hnatychyn Ya., Soltys М.: Zh. Prykl. Khimiyi, 1988, 71, 1524.

[8] Pet'ko I., Batog А., Zaytsev Yu.: Коmpoz. Polim. Mater., 1987, 34, 10.

[9] Berlin A., Korolev G., Kefeli T. et al.: Akrilovye Oligomery i Materialy na ikh Osnove. Khimiia, Moskow 1983.

[10] Volkova M., Bel'govskiy I., Golikov I.: Vysokomol. Soed., 1987, 28, 435.

[11] Semyannikov V., Prokhorov A., Golikov I.: Vysokomol. Soed., 1989, 31, 1602.

[12] Pomogaylo А.: Uspekhi Khimii, 2000, 69, 60.

[13] Zhil'tsova S.: Visnyk Donest. Univer. Ser. A. Pryrod. Nauky, 2014, 1, 144.

[14] Zakordonskiy V., Аksimentieva Е., Маrtyniyk G.: Коmpoz. Polim. Mater., 1989, 43, 25.

[15] Khovanets' G., Medvedevskikh Yu., Zakordonskiy V.: Visnyk Lviv. Univer. Ser. Khim., 2015, 56, 371.

[16] Dolbin I., Koslov G., Zaikov G.: Strukturnaya Stabilizatsiya Polimerov: Fraktalnye Modeli. Akademiya Estestvoznaniya, Moskow 2007.

[17] Ivanchev S., Mesh A., Reichelt N. et al.: Vysokomol. Soed., 2002, 44, 996.