Synthesis, Characterization and Photophysical Study of 4,4’-Diamino-2,2’-stilbenedisulfonate with Lanthanide Ions Complexes

Roseane Silva Oliveira1, Ana Cristina Trindade Cursino2, Fabiana Roberta Gonçalves e Silva Hussein3
1 Chemistry Institute, Federal Institute of Rio Grande do Norte, Pau dos Ferros, RN, Brazil; 2 Department of Chemistry, Federal University of Technology of Paraná, Medianeira, PR, Brazil; 3 Chemistry Institute, Federal University of Bahia, Salvador, BA, Brazil;
PDF icon full_text.pdf483.01 KB
Complex of 4,4’-diamino-2,2’-stilbenedisulfonic acid (DSD) with trivalent lanthanide ions Eu3+ and Tb3+ were prepared at the ratio of 3:1 (DSD:Ln). The complexes with ions present in the form of powder show black (Eu3+) and brown (Tb3+) colors. The complexometric titration and CHN elemental analysis suggest that these complexes have the general formula Eu(C14H12N2SO3SO3H)3∙3H2O and Tb(C14H12N2SO3SO3H)2(CF3SO3)∙3H2O. The shift of the 330 nm band for DSD to a longer wavelength in the infrared spectra of the complexes and the disappearance of the bands at 2921 and 2623 cm-1 are indicative of the formation of complexes with ions Eu3+ and Tb3+. Thermal analysis shows that DSD is thermally stable up to 573 K and the decomposition process of the complexes shows two and three mass losses for ions Eu3+ and Tb3+, respectively. The analysis of luminescence indicates that the complexes do not present the emission from the lanthanide moiety in the visible region. This may be related to the ligand triplet states, which are probably at lower energy than the emission state of the Eu3+ (5D0) and Tb3+ (5D4) ions.

[1] Malta, O.L.; Legendziewicz, J.; Huskowska, E.; Turowska-Tyrk, I.; Albuquerque, R.Q.; de Mello Donega, C.; M.R., E Silva, F.R.G. Experimental and Theoretical Study of Ligand Field, 4f-4f Intensities and Emission Quantum Yield in the Compound Eu(bpyO2)4(ClO4)3. J. Alloy. Compd. 2001, 324, 654-660.

[2] Bayer, E.; Rossner, W.; Grabmaier, B.; Alcalá, R.; Blasse, G. Time-Resolved Emission Spectroscopy of Pr3+ in a Fluoride Glass. Chem. Phys. Lett. 1993, 216, 228-230.

[3] Wong-Wah-Chung, P.; Mailhot, G.; Bolte, M. 4,4′-Diaminostilbene-2,2′-disulfonate (DSD) Behaviour: Under Irradiation in Water.: Decrease of its Activity as a Fluorescent Whitening Agent. J. Photochem. Photobiol. A 2001, 138, 275-280.

[4] Jiménez, M.M.; Pelletier, J.; Bobin, M.F.; Martini, M.C. Influence of Encapsulation on the In Vitro Percutaneous Absorption of Octyl Methoxycinnamate. Int. J. Pharm. 2004, 272, 45-55.

[5] Tampucci, S.; Burgalassi, S.; Chetoni, P.; Monti, D. Cutaneous Permeation and Penetration of Sunscreens: Formulation Strategies and In Vitro Methods. Cosmetics 2018, 5, 1.

[6] El-Toni, A.M.; Yin, S.; Sato, T. Silica Coating and Photochemical Properties of Layered Double Hydroxide/4,4'-diaminostilbene-2,2'-disulfonic Acid Nanocomposite. J. Colloid Interf. Sci. 2006, 293, 449-454.

[7] Diffey, B.L. Solar Ultraviolet Radiation Effects on Biological Systems. Phys. Med. Biol. 1991, 36, 299.

[8] Cursino, A.C.T.; Gardolinski, J.E.F.C.; Wypych, F. Intercalation of Anionic Organic Ultraviolet Ray Absorbers into Layered Zinc Hydroxide Nitrate. J. Colloid Interf. Sci. 2010, 347, 49-55.

[9] Cursino, A.C.N.; Mangrich, A.C.; da Costa Gardolinski, J.E.; Mattoso, N.; Wypych, F. Effect of Confinement of Anionic Organic Ultraviolet Ray Absorbers into Two-Dimensional Zinc Hydroxide Nitrate Galleries. J. Braz. Chem. Soc. 2011, 22, 1183.

[10] Cosoveanu, V.; Danciu, V.; Cimpan, G.; Martre, A.-M.; Mousset, G.; Gocan, S. Determination of 4,4′-Diaminostilbene-2,2′-disulfonic Acid by Thin-Layer Chromatography and Densitometry. J. Chromatogr. A 1996, 727, 324-329.

[11] Silverstein, R.M.; Webster, F.X.; Kiemle, D. Identificação Espectrométrica de Compostos Orgânicos; 7 edn., LTC., S.A., Rio de Janeiro, 2005.

[12] Ye, X.; Bai, H.; Ho, W.S.W. Synthesis and Characterization of New Sulfonated Polyimides as Proton-Exchange Membranes for Fuel Cells. J. Membrane Sci. 2006, 279, 570-577.

[13] Melo, D.M.D.A.; da Silva, H.E.B.; Zinner, L.B.; De Oliveira, Ó.A. Kinetic Study of the Coordination Compounds [M(DMA)3(H2O)6](CF3SO3)3, where M=Ce3+, Tb3+ and Lu3+. J. Alloy.Compd. 1998, 275-277, 801-805.

[14] Santos, B.S.; de Mello Donega, C.; de Sá, G.F. Photophysical Properties of Eu3+, Gd3+ and Tb3+ Complexes with 2-Hydroxy-2,4,6-cycloheptatrien-1-one. J. Lumin. 1997, 72-74, 535-537.

[15] Waldeck, D.H. Photoisomerization Dynamics of Stilbenes. Chem. Rev. 1991, 91, 415-436.

[16] Strashnikova, N.; Papper, V.; Parkhomyuk, P.; Likhtenshtein, G.I.; Ratner, V.; Marks, R. Local Medium Effects in the Photochemical Behavior of Substituted Stilbenes Immobilized on Quartz Surfaces. J. Photochem. Photobiol. A 1999, 122, 133-142.