Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Synthesis and Preparation of Hydrophobic CNTs-Coated Melamine Formaldehyde Foam by Green and Simple Method for Efficient Oil/Water Separation

The-Anh Phan1, Kim-Hoang Dang1, Lam Nguyen-Dinh1
Affiliation: 
1 The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang, Danang, Viet Nam * corresponding author: Dr. The-Anh Phan ptanh@dut.udn.vn
DOI: 
https://doi.org/10.23939/chcht14.04.531
AttachmentSize
PDF icon full_text.pdf667.27 KB
Abstract: 
Hydrophobic porous polymeric materials have attracted great interests recently as potential candicate for oil-water separation due to their high selectivity and sorption capacity. Herein, we present a green, simple and cost-effective method to change hydrophilic melamine formaldehyde (MF) foam to hydrophobic carbon nanotubes (CNTs) coated MF foam through an immersion process. The MF foam was produced from the MF resin which was synthesized in a laboratory by a condensation reaction between melamine and formaldehyde under alkaline condition with a molar ratio of melamine to formaldehyde of 1:3. The MF foam has an open-cell structure with the average pore diameter of 350 m, density of 25 kg •m-3 and porosity of 98 %. The as-prepared CNTs-coated MF foam exhibits high sorption capacity (23–-66 g/g) for oils and organic solvents, good recyclability and high selectivity.
References: 

[1] Kujawinski, E. B.;, Kido Soule, M. C.;, Valentine, D. et al.: L.; Boysen, A. K.; Longnecker, K.; Redmond, M. C. Fate of Dispersants Associated with the Deepwater Horizon Oil Spill. Environ. Sci. Technol., 2011, 45 (4), 1298–1306. https://doi.org/10.1021/es103838p.
[2] Broje, V.;, Keller, A.: A. Improved Mechanical Oil Spill Recovery Using an Optimized Geometry for the Skimmer Surface. Environ. Sci. Technol., 2006, 40 (24), 7914–7918. https://doi.org/10.1021/es061842m.
[3] Zahed, M. A.;, Aziz, H. A.;, Isa, M. et al.: H.; Mohajeri, L.; Mohajeri, S. Optimal Conditions for Bioremediation of Oily Seawater. Bioresour. Technol., 2010, 101, (24), 9455–9460. https://doi.org/10.1016/j.biortech.2010.07.077.
[4] Adebajo, M. O.;, Frost, R. L.;, Kloprogge, J. et al.: T.; Carmody, O.; Kokot, S. Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. J. Porous Mater., 2003, 10 (3), 159–170. https://doi.org/10.1023/A:1027484117065.
[5] Khin, M. M.;, Nair, A. S.;, Babu, V. et al.: J.; Murugan, R.; Ramakrishna, S. A Review on Nanomaterials for Environmental Remediation. Energy. Environ. Sci., 2012, 5 (8), 8075–8109. https://doi.org/10.1039/C2EE21818F.
[6] Singh, V.;, Kendall, R. J.;, Hake, K.;, Ramkumar, S.: Crude Oil Sorption by Raw Cotton. Ind. Eng. Chem. Res., 2013, 52 (18), 6277–6281. https://doi.org/10.1021/ie4005942.
[7] Angelova, D.;, Uzunov, I.;, Uzunova, S. et al.:; Gigova, A.; Minchev, L. Kinetics of Oil and Oil Products Adsorption by Carbonized Rice Husks. Chem. Eng. J., 2011, 172 (1), 306–311. https://doi.org/10.1016/j.cej.2011.05.114.
[8] Duong, H. T. T.;, Burford, R.: P. Effect of Foam Density, Oil Viscosity, and Temperature on Oil Sorption Behavior of Polyurethane. J. Appl. Polym. Sci., 2006, 99 (1), 360–367. https://doi.org/10.1002/app.22426.
[9] Ratcha, A.;, Samart, C.;, Yoosuk, B. et al.:; Sawada, H.; Reubroycharoen, P.; Kongparakul, S. Polyisoprene Modified Poly(Alkyl Acrylate) Foam as Oil Sorbent Material. J. Appl. Polym. Sci., 2015, 132 (42), n/a-n/a42688. https://doi.org/10.1002/app.42688.
[10] Hu, Y.;, Liu, X.;, Zou, J. et al.:; Gu, T.; Chai, W.; Li, H. Graphite/Isobutylene-Isoprene Rubber Highly Porous Cryogels as New Sorbents for Oil Spills and Organic Liquids. ACS Appl. Mater. Inter.faces, 2013, 5 (16), 7737–7742. https://doi.org/10.1021/am303294m.
[11] Geim, A. K.;, Novoselov, K.: S. The Rise of Graphene. Nat. Mater., 2007, 6 (3), 183–191. https://doi.org/10.1038/nmat1849.
[12] Sun, Y.,; Wu, Q.;, Shi, G.: Graphene Based New Energy Materials. Energy. Environ. Sci., 2011, 4 (4), 1113–1132. https://doi.org/10.1039/C0EE00683A.
[13] Gui, X.;, Wei, J.;, Wang, K. et al.:; Cao, A.; Zhu, H.; Jia, Y.; Shu, Q.; Wu, D. Carbon Nanotube Sponges. Adv. Mater. Deerfield Beach Fla., 2010, 22 (5), 617–621. https://doi.org/10.1002/adma.200902986.
[14] Bi, H.;, Xie, X.;, Yin, K. et al.:; Zhou, Y.; Wan, S.; He, L.; Xu, F.; Banhart, F.; Sun, L.; Ruoff, R. S. Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents. Adv. Funct. Mater., 2012, 22 (21), 4421–4425. https://doi.org/10.1002/adfm.201200888.
[15] Yang, Y.;, Tong, Z.;, Ngai, T.;, Wang, C.: Nitrogen-Rich and Fire-Resistant Carbon Aerogels for the Removal of Oil Contaminants from Water. ACS Appl. Mater. Interface.,s 2014, 6 (9), 6351–6360. https://doi.org/10.1021/am5016342.
[16] Luo, Y.;, Jiang, S.;, Xiao, Q. et al.:; Chen, C.; Li, B. Highly Reusable and Superhydrophobic Spongy Graphene Aerogels for Efficient Oil/Water Separation. Sci. Rep., 2017, 7 (1), 7162. https://doi.org/10.1038/s41598-017-07583-0.
[17] Zhu, H.;, Chen, D.;, Li, N. et al.:; Xu, Q.; Li, H.; He, J.; Lu, J. Graphene Foam with Switchable Oil Wettability for Oil and Organic Solvents Recovery. Adv. Funct. Mater., 2015, 25 (4), 597–605. https://doi.org/10.1002/adfm.201403864.
[18] Dai, Z.;, Weng, C.;, Liu, L. et al.: ; Hou, Y.; Zhao, X.; Kuang, J.; Shi, J.; Wei, Y.; Lou, J.; Zhang, Z. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio. Sci. Rep., 2016, 6. https://doi.org/10.1038/srep32989.
[19] Liu, T.,; Zhao, G.;, Zhang, W. et al.:; Chi, H.; Hou, C.; Sun, Y. The Preparation of Superhydrophobic Graphene/Melamine Composite Sponge Applied in Treatment of Oil Pollution. J. Porous Mater., 2015, 22 (6), 1573–1580. https://doi.org/10.1007/s10934-015-0040-8.
[20] Merline, D. J.;, Vukusic, S.;, Abdala, A.: A. Melamine Formaldehyde: Curing Studies and Reaction Mechanism. Polym. J., 2013, 45 (4), 413–419. https://doi.org/10.1038/pj.2012.162.
[21] Ullah, S.;, Bustam, M. A.;, Nadeem, M. et al.:; Naz, M. Y.; Tan, W. L.; Shariff, A. M. Synthesis and Thermal Degradation Studies of Melamine Formaldehyde Resins https://www.hindawi.com/journals/tswj/2014/940502/ (accessed Dec 12, 2017) Sci. World J., 2014, 2014. https://doi.org/10.1155/2014/940502.
[22] Mijatovic, J.;, Binder, W. H.;, Kubel, F.;, Kantner, W.: Studies on the Stability of MF Resin Solutions: Investigations on Network Formation. Macromol. Symp., 2002, 181 (1), 373–382. https://doi.org/10.1002/1521-3900(200205)181:1<373::AID-MASY373>3.0.CO;2-J.
[23] Kandelbauer, A.;, Wuzella, G.;, Mahendran, A. et al.:; Taudes, I.; Widsten, P. Model-Free Kinetic Analysis of Melamine–Formaldehyde Resin Cure. Chem. Eng. J., 2009, 152 (2), 556–565. https://doi.org/10.1016/j.cej.2009.05.027.
[24] Wang, D.;, Zhang, X.iaoxian;, Luo, S.,; Li, S.: Preparation and Property Analysis of Melamine Formaldehyde Foam. Adv. Mater. Phys. Chem., 2012, 02 (04), 63–67. https://doi.org/10.4236/ampc.2012.24B018.
[25] Manley, T. R.;, Higgs, D. A.: Thermal Stability of Melamine Formal-Dehyde Resins. J. Polym. Sci. Polym. Symp., 1973, 42 (3), 1377–1382. https://doi.org/10.1002/polc.5070420337.
[26] Devallencourt, C.;, Saiter, J. M.;, Fafet, A.;, Ubrich, E.: Thermogravimetry/Fourier Transform Infrared Coupling Investigations to Study the Thermal Stability of Melamine Formaldehyde Resin. Thermochim. Acta, 1995, 259 (1), 143–151. https://doi.org/10.1016/0040-6031(95)02262-Z.
[27] Edwards, E. R.;, Antunes, E. F.;, Botelho, E. et al.: C.; Baldan, M. R.; Corat, E. J. Evaluation of Residual Iron in Carbon Nanotubes Purified by Acid Treatments. Appl. Surf. Sci., 2011, 258 (2), 641–648. https://doi.org/10.1016/j.apsusc.2011.07.032.
[28] Abdala, A. A.;, Merline, D. J.;, Vukusic, S.: Melamine Formaldehyde: Curing Studies and Reaction Mechanism. Polym. J., 2012, 45 (4), 413. https://doi.org/10.1038/pj.2012.162.
[29] Nemanič, V.;, Zajec, B.;, Žumer, M. et al.:; Figar, N.; Kavšek, M.; Mihelič, I. Synthesis and Characterization of Melamine–Formaldehyde Rigid Foams for Vacuum Thermal Insulation. Appl. Energy., 2014, 114, 320–326. https://doi.org/10.1016/j.apenergy.2013.09.071.
[30] Wang, C.-F.;, Lin, S.-J.: Robust Superhydrophobic/Superoleophilic Sponge for Effective Continuous Absorption and Expulsion of Oil Pollutants from Water. ACS Appl. Mater. Interface., s2013, 5 (18), 8861–8864. https://doi.org/10.1021/am403266v.
[31] Gui, X.;, Zeng, Z.;, Lin, Z. et al.:; Gan, Q.; Xiang, R.; Zhu, Y.; Cao, A.; Tang, Z. Magnetic and Highly Recyclable Macroporous Carbon Nanotubes for Spilled Oil Sorption and Separation. ACS Appl. Mater. Interface.s, 2013, 5 (12), 5845–5850. https://doi.org/10.1021/am4015007.