Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Synthesis and Characterization of Mixed Al,Cu-Pillared and Copper Doped Al-Pillared Bentonite

Maryam Hamidi Ravari1, 2, Amir Sarrafi 1, Majid Tahmooresi3
Affiliation: 
1 Department of Chemical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran 2 Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran 3 Department of Material of Science, International Center of High Technology & Environmental Science, Mahan, Iran sarafi@uk.ac.ir
DOI: 
https://doi.org/10.23939/chcht13.02.231
AttachmentSize
PDF icon full_text.pdf245.91 KB
Abstract: 
In this paper, mixed aluminum and copper pillared clays (Al,Cu-PILCs) with different percentage of Cu and copper impregnated aluminum pillared clay (Cu@Al-PILC) were prepared using a bentonite sample. The samples were characterized by X-ray diffraction, N2 adsorption-desorption and Fourier transformed infrared spectroscopy. The results showed bentonite had a main reflection of montmorillonite that characterized by basal spacing, increased by pillaring. The specific BET surface area, total surface area and micropore volume of Al-PILC decreased in Cu@Al-PILC but increased in the case of mixed metal pillars and the maximum of these parameters related to Al,Cu15-PILC. Maximum weight percentage of copper was in Cu@Al-PILC therefore it contained higher percent of copper and its catalytic properties increased. FTIR result of samples confirmed the successful intercalation of Cu.
References: 

[1] Bergaya F., Theng B., Lagaly G.: Handbook of Clay Science. Elsevier 2006.
[2] Ayodele O., Lim J., Hameed B.: Appl. Catal. A-Gen., 2012, 413, 301. https://doi.org/10.1016/j.apcata.2011.11.023
[3] Britto J., Oliveira S., Rabelo D., Rangel M.: Catal. Today, 2008, 133, 582. https://doi.org/10.1016/j.cattod.2007.12.112
[4] Zuo S., Zhou R., Qi Ch.: J. Rare Earths, 2011, 29, 52. https://doi.org/10.1016/S1002-0721(10)60393-6
[5] Kloprogge J., Evans R., Hickey L., Frost L.: Appl. Clay Sci., 2002, 20, 157. https://doi.org/10.1016/S0169-1317(01)00069-2
[6] Mishra T.: Transition Metal Oxide-Pillared Clay Catalyst: Synthesis to Application [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+Business Media 2010.
[7] Mojovic Z., Bankovic P., Milutinovic-Nikolis A. et al.: Chem. Eng. J., 2009, 154, 149. https://doi.org/10.1016/j.cej.2009.05.004
[8] Pires J., Pinto M.: Pillared Interlayered Clays as Adsorbents of Gases and [in:] Gil A. et al. (Eds.): Pillared Clays and Related Catalysts. Springer Science+Business Media 2010.
[9] Chae H., Nam I., Ham S., Hong S.: Catal. Today, 2001, 68, 31. https://doi.org/10.1016/S0920-5861(01)00320-0
[10] Alejandro Galeano L., Angel Vicente M., Gil A.: Catal. Rev., 2014, 56, 239. https://doi.org/10.1080/01614940.2014.904182
[11] Turgut Basoglu F., Balci S.: Appl. Clay Sci., 2010, 50, 73. https://doi.org/10.1016/j.clay.2010.07.004
[12] Turgut Basoglu F., Balci S.: J. Mol. Struct., 2016, 1106, 382. https://doi.org/10.1016/j.molstruc.2015.10.072
[13] Bankovic P., Mojovic Z., Milutinovic-Nikolis A. et al.: Appl. Clay Sci., 2010, 49, 84. https://doi.org/10.1016/j.clay.2010.04.012
[14] Hadjltaief H., Zina M., Galves M., Costa P.: Comptes Rendus Chimie, 2015, 18, 1161. https://doi.org/10.1016/j.crci.2015.08.004
[15] Abeysinghe S.: Keggin-type aluminum nanoclusters: synthesis, structural characterization and environmental implications. MS thesis, University of Iowa, 2012.
[16] Giordano G., Perathoner S., Centi G. et al.: Catal. Today, 2007, 124, 240. https://doi.org/10.1016/j.cattod.2007.03.041
[17] Yang R., Tharappiwattananon N., Long R.: Appl. Catal. B-Environ., 1998, 19, 289. https://doi.org/10.1016/S0926-3373(98)00083-6
[18] Caudo S., Genovese Ch., Perathoner S., Centi G.: Micropor. Mesopor. Mater., 2008, 107, 46. https://doi.org/10.1016/j.micromeso.2007.05.011
[19] Windle C., Perutz R.: Adv. Chem. Rev., 2012, 256, 2562. https://doi.org/10.1016/j.ccr.2012.03.010
[20] Lowell S., Shields J., Thomas M., Thommes M.: Micropore Analysis. [in:] Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series, vol 16. Springer, Dordrecht 2004, 129-156. https://doi.org/10.1007/978-1-4020-2303-3_9
[21] Jasinska I.: Particle size pore structure of nanomaterial. PhD thesis, West Pomeranian University of Technology 2011.
[22] Lippens B., Deboer J.: J. Catal., 1995, 4, 319. https://doi.org/10.1016/0021-9517(65)90307-6
[23] Ayodele O., Hameed B.: J. Ind. Eng. Chem., 2013, 19, 966. https://doi.org/10.1016/j.jiec.2012.11.018
[24] Djomgoue P., NjopwouoD.: J. Surf. Eng. Mat. Adv. Technol., 2013, 3, 275. https://doi.org/10.4236/jsemat.2013.34037
[25] Tomul F., Balci S.: J. Sci., 2007, 21, 21.
[26] Regnier P., Lasaga A.C., Berner R. et al.: Am. Mineralogist, 1994, 79, 809.
[27] Hariharan M., Varghese N., Benny Cherian A. et al.: Int. J. Sci. Res. Publ., 2014, 4(10), 1.