Study of the Resistance to Degradation of Al2O3/Al2TiO5 Composites for Possible Use as Bone Tissue

Elizabeth Refugio-García1, Gerardo Vázquez-Huerta1, Fernando Arce-Aguilera1, Héctor Herrera-Hernández2, Jessica Osorio-Ramos1, José G. Miranda-Hernández2, José A. Rodríguez-García3, Enrique Rocha-Rangel3
Affiliation: 
1 Materials Department, Universidad Autónoma Metropolitana, Avenida San Pablo 180, Col. Reynosa-Tamaulipas, CDMX, 02200, México 2 Industrial Materials Research and Development Laboratory, Universidad Autónoma del Estado de México, Centro Universitario UAEM Valle de México, Atizapán de Zaragoza, Estado de México, 54500, México 3 Manufacture Department, Universidad Politécnica de Victoria, Av. Nuevas Tecnologías 5902, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas, 87138, México erochar@upv.edu.mx
DOI: 
https://doi.org/10.23939/chcht16.03.398
AttachmentSize
PDF icon full_text.pdf531.87 KB
Abstract: 
In this work we studied the response to degradation of Al2O3/Al2TiO5 composites in a Hanks’ solution, which simulates human synovial fluid in contact with bone tissues. Electrochemical impedance study determined that the resistance to polarization of composite rises with increases in the amount of Al2TiO5 and with the sintering time.
References: 

[1] Duffo, G. Biomateriales; Ministerio de Educación: Buenos Aires, Argentina, 2011.
[2] Hernández-Montes, V.; Betancur-Henao, C.; Santa-Marín, J. Titanium Dioxide Coatings on Magnesium Alloys for Biomaterials: A Review. Dyna 2017, 84, 261. https://doi.org/10.15446/dyna.v84n200.59664
[3] Peláez Abellán, E.; Rocha Sousa, L.; Hizau dos Santos Utuni, V.; Guastaldi, A.C. Estudio por Impedancia de Superficies Anodizadas en Implantes de Titanio. Revista Cubana de Química 2006, 18, 274.
[4] Mahmoudi, M.; Maleki-Ghaleh, H.; Kavanlouei, M.; Aghaie, E. Effect of Al2O3–Ti Composite Coating on Corrosion Behavior of TiAl6V4 Alloy. Mater. Corros. 2015, 66, 479-485. https://doi.org/10.1002/maco.201307486
[5] Reyes, F.; Galindo, J.; Aperador, W. Analysis of Properties and Degradation of the Alloy Fe- 3.31 Mn - 21.2 Al - 5.6 Cr - 0.7 C- 0.2 Ti. Revista ION [Online] 2012, 25, 31-37. http://www.scielo.org.co/scielo.php?pid=S0120-100X2012000300005&script=s... (accessed March 12, 2020)
[6] Sharma, A.; Singh, A. Corrosion and Wear Study of Ni-P-PTFE-Al2O3 Coating: The Effect of Heat Treatment. Cent. Eur. J. Eng. 2014, 4, 80-89. https://doi.org/10.2478/s13531-013-0137-2
[7] Arcos, D. Calcium Phosphate Bioceramics: Chapter 3. In Bio-Ceramics with Clinical Applications; Vallet-Regí, M., Ed.; John Wiley & Sons, 2014; pp 23-71. https://doi.org/10.1002/9781118406748.ch3
[8] Vallet-Regí, M. Evolution of Bioceramics within the Field of Biomaterials. Comptes Rendus Chimie 2010, 13, 174-185. https://doi.org/10.1016/j.crci.2009.03.004
[9] Montufar, E.B.; Casas-Luna, M.; Horynová, M.; Tkachenko, S.; Fohlerová, Z.; Diaz-de-la-Torre, S.; Dvořák, K.; Čelko, L.; Kaiser, J. High Strength, Biodegradable and Cytocompatible Alpha Tricalcium Phosphate-Iron Composites for Temporal Reduction of Bone Fractures. Acta Biomater. 2018, 70, 293-303. https://doi.org/10.1016/j.actbio.2018.02.002
[10] Mehrali, M.; Moghaddam, E.; Shirazi, S.F.S.; Baradaran, S.; Mehrali, M.; Latibari, S.T.; Metselaar, H.S.C.; Kadri, N.A.; Zandi, K.; Osman, N.A.A. Synthesis, Mechanical Properties, and in Vitro Biocompatibility with Osteoblasts of Calcium Silicate–Reduced Graphene Oxide Composites. ACS Appl. Mater. Interfaces 2014, 6, 3947-3962. https://doi.org/10.1021/am500845x
[11] Habibe, A.F.; Souza, R.C., Maeda, L.D.; Bicalho, L.A.; Barboza, M.J.R.; Santos, C. Biocerâmicas à Base de ZrO2-Tetragonal Obtidas por Sinterização via Fase Líquida. Tecnologia Em Metalurgia e Materiais 2008, 4, 23-29. https://doi.org/10.4322/tmm.00403005
[12] Handbook of Bionanocomposites; Ahmed, S., Kanchi, S., Eds.; Pan Stanford Publishing Ltd, 2018.
[13] Álvarez-Bustamante, R.; Negrón-Silva, G.; Abreu-Quijano, M.; Herrera-Hernández, H.; Romero-Romo, M.; Cuán, A.; Palomar-Pardavé, M. Electrochemical Study of 2-Mercaptoimidazole as a Novel Corrosion Inhibitor for Steels. Electrochim. Acta 2009, 54, 5393-5399. https://doi.org/10.1016/j.electacta.2009.04.029
[14] Garfias-Garcia E., Colin-Paniagua F.A.; Herrera-Hernández H.; Juarez-Garcia, J.M.; Palomar-Pardavé, M.E.; Romero-Romo, M.R. Electrochemical and Microscopy Study of Localized Corrosion on a Sensitized Stainless Steel AISI 304. ECS Trans. 2010, 29, 93-102. https://doi.org/10.1149/1.3532307
[15] Herrera-Hernández, H.; Franco-Tronco, M.I.; Miranda-Hernández, J.G.; Hernández-Sánchez, E.; Espinoza-Vázquez, A.; Fajardo, G. Gel de Aloe-vera Como Potencial Inhibidor de la Corrosión del Acero de Refuerzo Estructural. Avances en Ciencias e Ingeniería 2015, 6, 9-23.
[16] Aperador-Chaparro, W.; Bautista-Ruiz, J.H.; Mejía, A.S. Determinación por Visión Artificial del Factor de Degradación en Aleaciones Biocompatibles. Informacion Tecnologica 2013, 24, 109-120. https://doi.org/10.4067/S0718-07642013000200012
[17] Nishida, A.; Kim, W.-C.; Yoshida, T.; Oka, Y.; Yamada, N.; Nakase, M.; Ikoma, K.; Fujiwara, H.; Ishikawa, N.; Ikegaya, H. et al. A New Method for the Estimation of Age at Death by Using Electrical Impedance: A Preliminary Study. Leg. Med. 2015, 17, 560-568. https://doi.org/10.1016/j.legalmed.2015.07.003
[18] Claussen, N.; Wu, S.; Holz, D. Reaction Bonding of Aluminum Oxide (RBAO) Composites: Processing, Reaction Mechanisms and Properties. J. Eur. Ceram. Soc. 1994, 14, 97-109. https://doi.org/10.1016/0955-2219(94)90097-3
[19] Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371-372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
[20] Montes Rodríguez, M. Bachelor Thesis, ESIQIE-IPN, México, 2007.
[21] Ohya, Y.; Kawauchi, Y.; Ban, T. Cation Distribution of Pseudobrookite-Type Titanates and their Phase Stability. J. Ceram. Soc. Japan 2017, 125, 695-700. https://doi.org/10.2109/jcersj2.17086