Structural, Morphological and Optical Properties of Nanoproducts of Zirconium Target Laser Ablation in Water and Aqueous SDS Solutions

Vyacheslav Karpukhin, Michael Malikov, Tatyana Borodina, George Valyano, Olesya Gololobova and Dmitry Strikanov
Affiliation: 
Joint Institute of High Temperatures, Russian Academy of Science 13(2), Izhorskaya St., 125412 Moscow, Russian Federation; vtkarp@gmail.com
DOI: 
https://doi.org/10.23939/chcht11.01.025
AttachmentSize
PDF icon full_text.pdf1.53 MB
Abstract: 
Structural, morphological and optical properties of nanoproducts of laser ablation of zirconium target in water and aqueous SDS solutions were investigated. Depending on experiment conditions the indicated products can appear as different crystalline phases of zirconia and organic-inorganic composites, which include SDS alkyl chains intercalated between layers of zirconium oxides or hydroxides. The formation of zirconium dioxide-based hollow nano and microstructures is demonstrated. It is suggested that ablation formed gas-vapor bubbles can serve as templets for generation of hollow structures.
References: 

[1] Shukla S., Seal S. and Vanfleet R.: J. Sol-Gel Sci. Technol., 2003, 27, 119.
https://doi.org/10.1023/A:1023790231892

[2] Salavati-Niasarim M., Dadkhah M. and Davar F.: Inorg. Chem. Acta, 2009, 362, 3969.
https://doi.org/10.1016/j.ica.2009.05.036

[3] Feng X., Bai Y., Lu B. et al.: J. Cryst. Growth, 2004, 262, 420.
https://doi.org/10.1016/j.jcrysgro.2003.10.063

[4] Ray J., Pramanik P. and Ram S.: Mater. Lett., 2001, 48, 281.
https://doi.org/10.1016/S0167-577X(00)00316-5

[5] Sliem M., Schmidt D., Betard A. et al.: Chem. Mater., 2012, 24, 4274.
https://doi.org/10.1021/cm301128a

[6] Tok A., Boey F., Du S. and Wong B.: Mater. Sci. Eng. B., 2006, 130, 114.
https://doi.org/10.1016/j.mseb.2006.02.069

[7] Meskin P., Ivanov V., Barantchikov A. et al.: Ultrasonics Sonochem., 2006, 13, 47.
https://doi.org/10.1016/j.ultsonch.2004.12.002

[8] Chen L., Mashimo T., Omurzak E. et al.: J. Phys. Chem. C., 2011, 115, 9370.
https://doi.org/10.1021/jp111367k

[9] Cao G.: Nanostructures and nanomaterials: Synthesis, Properties and Applications. Imperial College Press, London 2004.
https://doi.org/10.1142/p305

[11] Botta S., Navio J., Hidalgo M. et al.: J. Photochem. Photobiol. A, 1999, 129, 89.
https://doi.org/10.1016/S1010-6030(99)00150-1

[12] Subbarao E. and Maiti H.: Adv. Ceram., 1988, 24, 731.

[13] Latha Kumari, Du G., Li W. et al.: Ceramics Int., 2009, 35, 2401.
https://doi.org/10.1016/j.ceramint.2009.02.007

[14] Varaksin A. Protasov M. and Teplitsky Yu.: High Temperature, 2014, 52, 581.

[15] Kumar B., Thareja R.K.: J. Appl. Phys., 2010, 108, 064906.
https://doi.org/10.1063/1.3486517

[16] Stratakis E., Zorba V., Barberoglou M. et al.: Appl. Surf. Sci., 2009, 255, 5346.
https://doi.org/10.1016/j.apsusc.2008.07.183

[17] Liu P., Cai W., Fang M. et al.: Nanotechnology, 2009, 20, 285707.
https://doi.org/10.1088/0957-4484/20/28/285707

[18] Dezhi Tan, Geng Lin, Yin Liu et al.: J. Nanopart. Res., 2011, 13, 1183.
https://doi.org/10.1007/s11051-010-0110-4

[19] Dezhi Tan, Yu Teng, Yin Liu et al.: Chem. Lett., 2009, 38, 1102.
https://doi.org/10.1246/cl.2009.1102

[20] Mahmoud A., Fadhill Z., Ibrahim Al-Nassar S. et al.: J. Mat. Sci. and Eng. B3, 2013, 6, 364.

[21] Chao-Hsien Wu, Chang-Ning Huang, Pouyan Shen et al.: J. Nanopart. Res., 2011, 13, 6633.
https://doi.org/10.1007/s11051-011-0571-0

[22] Golightly J. and Castleman A.: Zeitschrift für Physikalische Chemie, 2010, 221, 1455.
https://doi.org/10.1524/zpch.2007.221.11-12.1455

[23] Simakin A., Voronov V. and Shafeev G.: Phys. of Wave Phenomena, 2007, 15. 218.
https://doi.org/10.3103/S1541308X07040024

[24] Bozon-Verduraz F., Brayner R., Voronov V. et al.: Quantum Electron., 2003, 33, 714.
https://doi.org/10.1070/QE2003v033n08ABEH002484

[25] Yang G.: Progress in Mater. Sci., 2007, 52, 648.
https://doi.org/10.1016/j.pmatsci.2006.10.016

[26] Karpuhin V., Malikov M., Val'yano G. et al.: High Temperature, 2011, 49, 681.
https://doi.org/10.1134/S0018151X11050099

[27] Batenin V., Bokhan P., Buchanov V. et al.: Lazery na Samoogranichennykh Perekhodakh Atomov Metallov-2. Publ. House of Physics, Moskva 2011.

[28] Stefanic G. and Music S.: Croatica Chem. Acta, 2002, 75, 727.

[29] Li C. and Li M.: J. Raman Spectrosc., 2002, 32, 301.
https://doi.org/10.1002/jrs.863

[30] Pesika N., Hu Z., Stebe K. and Searson P.: J. Phys. Chem, B, 2002, 106, 6985.
https://doi.org/10.1021/jp0144606

[31] Kandare E., Chigwada G., Wang D. et al.: Polymer Degradation and Stability, 2006, 91, 1781.
https://doi.org/10.1016/j.polymdegradstab.2005.11.021

[32] Huo Q., Margolese D., Ciesla U. et al.: Chem. of Mater, 1994, 6, 1176.
https://doi.org/10.1021/cm00044a016

[33] Karpukhin V., Malikov M., Val'yano G. et al.: J. Nanotechnol., 2012, Article ID 910761 (2012); doi: 10.1155/2012/910761.
https://doi.org/10.1155/2012/910761

[34] Borodina T., Val'yano G., Gololobova O. et al.: Quantum Electron., 2013, 43, 563.
https://doi.org/10.1070/QE2013v043n06ABEH015062

[35] Smith L., Duncan A., Thomson G. et al.: J. Crystal Growth, 2004, 263, 480.
https://doi.org/10.1016/j.jcrysgro.2003.11.025

[36] Yan Z., Bao R., Wright R. and Chrisey D.: Appl. Phys. Lett., 2010, 97, 124106.
https://doi.org/10.1063/1.3488003

[37] Yan Z., Bao R., Huang Y. et al.: J. Phys. Chem. C, 2010, 114, 3869.
https://doi.org/10.1021/jp911566a

[38] Yan Z., Bao R., Huang Y. and Chrisey D.: J. Phys. Chem. C, 2010, 114, 11370.
https://doi.org/10.1021/jp104884x

[39] Yan Z., Bao R. and Chrisey D.: Nanotechnology, 2010, 21, 145609.
https://doi.org/10.1088/0957-4484/21/14/145609

[40] Lim K., Quinto-Su P., Klaseboer E. et al.: Phys. Rev. E, 2010, 81, 016308.
https://doi.org/10.1103/PhysRevE.81.016308

[41] Yavas O., Leiderer P., Park H. et al.: Phys. Rev. Lett., 1993, 70, 1830.
https://doi.org/10.1103/PhysRevLett.70.1830

[42] Ohl C., Lindau O. and Lauterborn W.: Phys. Rev. Lett., 1998, 80, 393.
https://doi.org/10.1103/PhysRevLett.80.393

[43] Brenner M.: Rev. of Modern Phys, 2002, 74, 425.
https://doi.org/10.1103/RevModPhys.74.425

[44] Li X., Shimizu Y., Pyatenko A. et al.: Nanotechnology, 2012, 23, 115602.
https://doi.org/10.1088/0957-4484/23/11/115602

[45] Takeda S., Ikuta Y., Hirano M. and Hosono H.: J. Mater. Res., 2001, 16, 1003.
https://doi.org/10.1557/JMR.2001.0141

[46] Pyatenko A., Yamaguchi M. and Suzuki M.: J. Phys. Chem. C, 2007, 111, 7910.
https://doi.org/10.1021/jp071080x

[47] Binks B.: Current Opinion in Colloids and Interface Sci., 2002, 7, 21.
https://doi.org/10.1016/S1359-0294(02)00008-0

[48] Ostwald W.: Lehrbuch der Allgemeinen Chemie, v.2, Leipzig 1896.

[49] Ratke L. and Voorhees P.: Growth and Coarsening: Ostwald Ripening in Material Processing. Springer 2002.
https://doi.org/10.1007/978-3-662-04884-9

[50] Orru R., Licheri R., Locci A. et al.: Mater. Sci. .Eng. R., 2009, 63, 127.

[51] Kang Suk-Joong L.: Sintering: Densification, Grain Growth, and Microstructure. Elsevier Ltd. 2005.

[52] Smigelskas A. and Kirkendall E.: Trans. AIME, 1947, 171, 130.

[53] Niu K., Park J., Zheng H. and Alivisatos A.: Nano Lett., 2013, 13, 5715.
https://doi.org/10.1021/nl4035362

[54] Niu K., Yang J., Kulinich S. et al.: Langmuir, 2010, 26, 16652.
https://doi.org/10.1021/la1033146

[55] Yang J., Hou J. and Du X. School of Materials Science and Engineering. Tianjin: Tianjin University, 2013, 300072.

[56] Bluvshtein Z., Nizhnikova G. and Farberovich U.: Sov. Phys. Solid State, 1990, 32, 548.

[57] Lopez E., Escribano V., Panizza M. et al.: J. Mater. Chem., 2001, 11, 1891.
https://doi.org/10.1039/b100909p

[58] Sutton D.: Electronic Spectra of Transition Metal Complexes. McGraw-Hill, New York 1968.

[59] Emeline A., Kataeva G., Litke A. et al.: Langmuir, 1998, 14, 5011.
https://doi.org/10.1021/la980083l

[60] Cong Y., Li B., Yue S. et al.: J. Phys. Chem. C., 2009, 113, 13974.
https://doi.org/10.1021/jp8103497

[61] Karpov S. and Slabko V.: Opticheskie i Fotofizicheskie Svoistva Fractalno-Structuririvannykh Zolei Metallov. Ros. Acad. Nauk, Novosibirsk 2003.

[62] Sahu H. and Rao G.: Bull. Mater. Sci., 2000, 23, 349.
https://doi.org/10.1007/BF02708383

[63] Geethalakshmi K., Prabhakaran T. and Hema: J. World Academy of Sci. Eng.Tech., 2012, 64, 150.

[64] Pankove J.: Optical Properties in Semiconductors. Prentice Hall, Englewood Cliffs, NJ 1971.

[65] Lushchik Ch. and Lushchik A.: Elektronnye Vozbuzhdeniya s Obrazovaniem Defectov v Tverdykh Telakh. Nauka, Moskva 1989.

[66] Strekalovsky V., Polezhaev Yu. and Palguev S.: Oksidy s Primesnoi Razuporyadochennostiu: Sostav, Structura, Fazovye Prevrashcheniya. Nauka, Moskva 1987.

[67] Sliem M., Schmidt D., Betard A. et al.: Chem. Mater., 2012, 24, 4274.
https://doi.org/10.1021/cm301128a

[68] Reddy Channu V., Kalluru R., Schlesinger M. et al.: Coll. Surf. A: Physicochem. Eng. Aspects, 2011, 386, 151.

[69] Neppolian B., Wang Q., Yamashita H. and Choi H.: Appl. Catal. A, 2007, 333, 264.
https://doi.org/10.1016/j.apcata.2007.09.026

[70] Zhou J., Wu W., Caruntu D. et al.: J. Phys. Chem. C., 2007, 111, 17473.
https://doi.org/10.1021/jp074123i