Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Strengthening of Mullite Ceramics with Silver Reinforcements

Santiago Arellano-Mora1, Jessica Osorio-Ramos1, Elizabeth Refugio-García1, Eduardo Térres-Rojas2, José Guadalupe Miranda-Hernández3, Enrique Rocha-Rangel4
Affiliation: 
1 Universidad Autónoma Metropolitana, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200, CDMX, México 2 Laboratorio de Microscopía Electrónica de Ultra Alta Resolución, IMP, Eje Central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, 07730, CDMX, México 3 Industrial Materials Research and Development Laboratory, Universidad Autónoma del Estado de México, Centro Universitario UAEM Valle de México, Atizapán de Zaragoza, 54500, Estado de México, México 4 Universidad Politécnica de Victoria, Av. Nuevas Tecnologías 5902, Parque Científico y Tecnológico de Tamaulipas, 87138, Cd. Victoria, Tamaulipas, México erochar@upv.edu.mx
DOI: 
https://doi.org/10.23939/chcht18.01.001
AttachmentSize
PDF icon full_text.pdf448.89 KB
Abstract: 
Mullite-based composites reinforced with silver particles were obtained by powder techniques. Composites were sintered after an intense mixing of the precursor powders. It was found that additions of silver have a strong effect on the mechanical properties, since fracture toughness was increased up to 350%. The microstructure of composites presents grains with flakes morphology.
References: 

[1] Ighodaro, O.L.; Okoli, O.I. Fracture Toughness Enhancement for Alumina Systems: A Review. Int. J. Appl. Ceram. Technol. 2008, 5, 313-323. http://dx.doi.org/10.1111/j.1744-7402.2008.02224.x
https://doi.org/10.1111/j.1744-7402.2008.02224.x

[2] Miyazaki, H.; Yoshizawa, Y.; Hirao K. Preparation and Mechanical Properties of 10 vol.% Zirconia/Alumina Composite with Fine-Scale Fibrous Microstructure by Co-Extrusion Process. Mater. Lett. 2004, 58, 1410-1414. https://doi.org/10.1016/j.matlet.2003.09.037
https://doi.org/10.1016/j.matlet.2003.09.037

[3] Hotta, T.; Abeb, H.; Naitob, M.; Takahashic, M.; Uematsud, K.; Katod, Z. Effect of Coarse Particles on the Strength of Alumina Made by Slip Casting. Powder Technol. 2005, 149, 106-111. https://doi.org/10.1016/j.powtec.2004.11.004
https://doi.org/10.1016/j.powtec.2004.11.004

[4] Banerjee, T.; Dey, S.; Sekhar, A. P. Design of Alumina Reinforced Aluminium Alloy Composites with Improved Tribo-Mechanical Properties: A Machine Learning Approach. Trans. Indian Inst. Met. 2020, 73, 3059-3069. https://doi.org/10.1007/s12666-020-02108-2
https://doi.org/10.1007/s12666-020-02108-2

[5] Nan, L.Y.; Zhang, W.Z.; Cao, Y.F.; Zhang, T.E. Properties and Application of Alumina Reinforced Aluminum Composite. Adv. Mat. Res. 2013, 853, 68-74. https://doi.org/10.4028/www.scientific.net/AMR.853.68
https://doi.org/10.4028/www.scientific.net/AMR.853.68

[6] Liu, C.; Zhang, J.; Sun, J.; Zhang, X. Addition of Al-Ti-B master Alloys to Improve the Performances of Alumina Matrix Ceramic Materials. Ceram. Int. 2007, 33, 1319-1324. https://doi.org/10.1016/j.ceramint.2006.04.014
https://doi.org/10.1016/j.ceramint.2006.04.014

[7] Krishnan, S.V.; Ambalam, M.M.M.; Venkatesan, R. Mayandib, J.; Venkatachalapathy, V. Technical Review: Improvement of Mechanical Properties and Suitability Towards Armor Applications - Alumina Composites. Ceram. Int. 2021, 45, 23693-23701. https://doi.org/10.1016/j.ceramint.2021.05.146
https://doi.org/10.1016/j.ceramint.2021.05.146

[8] Konopka, K.; Szafran, M.J. Fabrication of Al2O3-Al Composites by Infiltration Method and their Characteristic. Mater. Proc. Technol. 2006, 175, 266-270. https://doi.org/10.1016/j.jmatprotec.2005.04.046
https://doi.org/10.1016/j.jmatprotec.2005.04.046

[9] Mojović, Z.; Novaković, T.; Mojović, M. Electrochemical and Structural Properties of Ni(II)-Alumina Composites as an Annealing Temperature Function. Sci. Sint. 2019, 51, 339-351. https://doi.org/10.2298/SOS1903339M
https://doi.org/10.2298/SOS1903339M

[10] Choo, T.F.; Amran, M.; Salleh, M.; Kok, K.Y.; Matori, K.A.A Review on Synthesis of Mullite Ceramics from Industrial Wastes. Recycling 2019, 4, 391-401. https://doi.org/10.3390/recycling4030039
https://doi.org/10.3390/recycling4030039

[11] Villar, M.P.; Gago-Duport, L.; Garcia, R. Comportamiento de Mullitas a Alta Temperatura: Estudio Mediante Difracción de Rayos X Bull. Spain Soc. Ceram. Vid. 2004, 43, 135-137. https://doi.org/10.3989/cyv.2004.v43.i2.485
https://doi.org/10.3989/cyv.2004.v43.i2.485

[12] Claussen, N. Transformation-Toughened Ceramics. In Advanced Energy Technologies; Kröckel, H.; Merz, M.; Van der Biest, Eds.; Brussels and Luxembourg, 1984; pp 51-86.
https://doi.org/10.1007/978-94-009-6424-2_5

[13] Miranda-Hernández, J.G.; Herrera-Hernández, H.; Refugio-García, E.; Rocha-Rangel, E.; Juárez-García, J.M. Compositos Cerámicos Base Mullita/Co, Ti, Ni, Cu y ZrO2 Manufacturados por Metalurgia de Polvos. Avances en Ciencias e Ingeniería 2014, 5, 83-93. https://www.redalyc.org/articulo.oa?id=323632128005

[14] Yu-Ming, T.; Peng-Feil, Z.; Xiang-Chen, K.; Ai-Ping, L.; Kai-Yue, W.; Yue-Sheng, C.; Zhan-Gang, L.; De-Fu, L.V. The Effect of Sintering Temperature on the Structure and Properties of Corundum/Mullite Ceramics. Sci. Sinter. 2015, 47, 273-278. https://doi.org/10.2298/SOS1503273Y
https://doi.org/10.2298/SOS1503273Y

[15] Téllez-Arias, M.G.; Miranda-Hernández, J.G.; Olea-Mejía, O.; Lemus-Ruiz, J.; Terrés, E. Effect of Silver Nanoparticless in the Structure and Mechanical Properties of Mullite/Ag Cermets. Sci. Sinter. 2019, 51, 175-187. https://doi.org/10.2298/SOS1902175T
https://doi.org/10.2298/SOS1902175T

[16] Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371-372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
https://doi.org/10.1111/j.1151-2916.1976.tb10991.x

[17] ASTM E384 - 16, Standard Test Method for Microindentation Hardness of Materials, 2016.

[18] Suryanarayana, C. Mechanical Alloying and Milling; Marcel Dekker: New York, 2004.
https://doi.org/10.1201/9780203020647

[19] Mansoor, M.; Shahid, M. Carbon Nanotube-Reinforced Aluminum Composite Produced by Induction Melting. J. Appl. Res. Technol. 2016, 14, 215-224. https://doi.org/10.1016/j.jart.2016.05.002
https://doi.org/10.1016/j.jart.2016.05.002

[20] http://rruff.info/Mullite/R141103 [accessed sept 30, 2022].

[21] Allen, W.; Burton, K.; Ong, T.; Rea, I.; Chan, Y. On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of its Application to Zeolites with One-Dimensional Pore Systems. Microporous Mesoporous Mater. 2009, 117, 75-90. https://doi.org/10.1016/j.micromeso.2008.06.010
https://doi.org/10.1016/j.micromeso.2008.06.010

[22] Ushio, M.; Sumiyoshi, Y. The Wetting of an Alumina Substrate by Liquid Silver. Bull. Chem. Soc. Jpn. 1987, 60, 2041-2045. https://doi.org/10.1246/bcsj.60.2041
https://doi.org/10.1246/bcsj.60.2041

[23] Loehman, R.E.; Tomsia, A.P. Wetting and Joining of Mullite Ceramics by Active-Metal Braze Alloys J. Am. Ceram. Soc. 1994, 77, 271-274. https://doi.org/10.1111/j.1151-2916.1994.tb06989.x
https://doi.org/10.1111/j.1151-2916.1994.tb06989.x

[24] Mullite Engineering Properties. http://accuratus.com/mullite.html, 2013 [accessed sept 30, 2022].