Removal of Pb(II) from Aqueous Solution by Ceramsite Prepared from Isfahan Bentonite and γ-Alumina

Iman Mobasherpour1, Masomeh Javaherai1, Esmail Salahi1, Mohsen Ebrahimi1,2, Zahra Ashrafi1, Yasin Orooji2
Affiliation: 
1 Ceramics Department, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Iran 2College of Materials Science and Engineering, Nanjing Forestry University, No. 159, LongpanRoad, Nanjing, 210037 Jiangsu, China Iman.Mobasherpour@gmail.com
DOI: 
https://doi.org/10.23939/chcht15.02.263
AttachmentSize
PDF icon full_text.pdf1022.66 KB
Abstract: 
Removal of lead from aqueous solutions was studied using nanocomposite absorbent of bentonite/-alumina. The novel absorbent was characterized using XRD, FT-IR and SEM-EDX. Absorption process optimization using response surface methodology (RSM) and experimental design was performed with central composite design technique. The effects of Pb(II) initial concentration, adsorbent dosage, and composite percentage on Pb(II) removal percentage and adsorption capacity were examined. The adsorption capacity of 166.559 mg/g and removal % of 82.9887 with desirability equal to 0.763 were obtained for optimal initial concentration of 200 mg•l-1, adsorbent dosage of 0.5 mg•l-1, and composite percentage of 7.08 % determined using RSM design. The equilibrium adsorption data were investigated by Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. It was found that Freundlich isotherm model fits better compared with other models.
References: 

[1] Gumpu M., Sethuraman S., Krishnan U., Rayappan J.: Sensor Actuat.B-Chem, 2015, 213, 515. https://doi.org/10.1016/j.snb.2015.02.122
https://doi.org/10.1016/j.snb.2015.02.122

[2] Barakat M.: Arab. J. Chem., 2011, 4, 361. https://doi.org/10.1016/j.arabjc.2010.07.019
https://doi.org/10.1016/j.arabjc.2010.07.019

[3]Fu F., Wang Q.: J. Environ.Manage., 2011, 92, 407. https://doi.org/10.1016/j.jenvman.2010.11.011
https://doi.org/10.1016/j.jenvman.2010.11.011

[4] Aminul Islam Md., Morton D., Johnson B.et al.: J.Water Process. Eng., 2018, 26, 264. https://doi.org/10.1016/j.jwpe.2018.10.018
https://doi.org/10.1016/j.jwpe.2018.10.018

[5] Lu F., Astruc D.: Coord. Chem. Rev.,2018, 365, 147. https://doi.org/10.1016/j.ccr.2017.11.003
https://doi.org/10.1016/j.ccr.2017.11.003

[6] Singh N., Nagpal G., Agrawal S., Rachna: Environ. Technol. Innovat., 2018, 11, 187. https://doi.org/10.1016/j.eti.2018.05.006
https://doi.org/10.1016/j.eti.2018.05.006

[7] Babel S.: J. Hazard. Mater., 2003, 97, 219. https://doi.org/10.1016/s0304-3894(02)00263-7
https://doi.org/10.1016/S0304-3894(02)00263-7

[8] Yuan L., Liu Y.: Chem. Eng. J., 2013, 215, 432. https://doi.org/10.1016/j.cej.2012.11.016
https://doi.org/10.1016/j.cej.2012.11.016

[9] Hua M., Zhang S., Pan B.et al.: J. Hazard. Mater., 2012, 211, 317. https://doi.org/10.1016/j.jhazmat.2011.10.016
https://doi.org/10.1016/j.jhazmat.2011.10.016

[10] Bhat A., Megeri G., Thomas C.et al.: J. Environ.Chem. Eng., 2015, 3, 30. https://doi.org/10.1016/j.jece.2014.11.014
https://doi.org/10.1016/j.jece.2014.11.014

[11] Sadeghalvad B., Karimi H., Hosseinzadegan H., Azadmehr A.: Desalin.Water Treat., 2014, 52, 6440. https://doi.org/10.1080/19443994.2013.823352
https://doi.org/10.1080/19443994.2013.823352

[12]Myers R., Montgomery D., Anderson-Cook C.: Response Surface Methodology: Process and Product Optimization using Designed Experiments, 4ndedn. John Wiley & Sons 2016.

[13] Murugesan A., Vidhyadevi T., Kalaivani S.et al.: J. Water Process. Eng., 2014, 3, 132. https://doi.org/10.1016/j.jwpe.2014.06.004
https://doi.org/10.1016/j.jwpe.2014.06.004

[14] Zhen H., Xu-Tao Z., Gui-Qing X.: Proceed. Int. Conf. on Technology Innovation and Industrial Management, 2013, 120.

[15] Ahmad R., Hasan I.: Environ.Nanotechn., Monitor. Manage., 2016, 6, 116. https://doi.org/10.1016/j.enmm.2016.09.002
https://doi.org/10.1016/j.enmm.2016.09.002

[16] Kaynar Ü., Şabikoğlu I., Kaynar S.,Eral M.: Appl. Radiat. Isot., 2016, 115, 280. https://doi.org/10.1016/j.apradiso.2016.06.033
https://doi.org/10.1016/j.apradiso.2016.06.033

[17] Savasari M., Emadi M., Bahmanyar M., Biparva P.: J. Ind. Eng. Chem., 2015, 21, 1403. https://doi.org/10.1016/j.jiec.2014.06.014
https://doi.org/10.1016/j.jiec.2014.06.014

[18] Hamane D., Arous O., Kaouah F.et al.: J. Environ.Chem. Eng., 2015, 3, 60. https://doi.org/10.1016/j.jece.2014.11.003
https://doi.org/10.1016/j.jece.2014.11.003

[19] Kalantari K., Ahmad M., Masoumi H.et al.: Int. J. Mol. Sci., 2014, 15, 12913. https://doi.org/10.3390/ijms150712913
https://doi.org/10.3390/ijms150712913

[20] Zamani S., Salahi E., Mobasherpour I.: Res.Chem.Intermed., 2014, 40, 1753. https://doi.org/10.1007/s11164-013-1078-3
https://doi.org/10.1007/s11164-013-1078-3

[21] Toor M., Jin B., Dai S., Vimonses V.: Ind. Eng. Chem. Res., 2015, 21, 653. https://doi.org/10.1016/j.jiec.2014.03.033
https://doi.org/10.1016/j.jiec.2014.03.033

[22] Ranđelović M., Purenović M., Zarubica A.et al.: J. Hazard. Mater., 2012, 199, 367. https://doi.org/10.1016/j.jhazmat.2011.11.025
https://doi.org/10.1016/j.jhazmat.2011.11.025

[23] Can N., Ömür B., Altındal A.: Sensor. Actuat. B-Chem., 2016, 237, 953. https://doi.org/10.1016/j.snb.2016.07.026
https://doi.org/10.1016/j.snb.2016.07.026

[24] Mobasherpour I., Salahi E., Ebrahimi M.: Res. Chem. Intermed., 2012, 38, 2205. https://doi.org/10.1007/s11164-012-0537-6
https://doi.org/10.1007/s11164-012-0537-6

[25] Mobasherpour I., Salahi E., Pazouki M.: Desalination, 2011, 266, 142. https://doi.org/10.1016/j.desal.2010.08.016
https://doi.org/10.1016/j.desal.2010.08.016

[26] Doğan M., Alkan M., Demirbaş Ö.et al.: Chem. Eng. J., 2006, 124, 89. https://doi.org/10.1016/j.cej.2006.08.016
https://doi.org/10.1016/j.cej.2006.08.016