The Quantitative Theory of Diffraction by Spiral Nanotubes

Oleg Figovsky1, Dmitry Pashin2, Zufar Khalitov2 and Azat Khadiev2
Affiliation: 
1 Polymate Ltd., International Nanotechnology Research Center, Migdal HaEmek, Israel 2 Kazan National Research Technical University, 10, K. Marx str., Kazan, Tatarstan 420111, Russia; pashin@addnano.ru
DOI: 
https://doi.org/10.23939/chcht08.01.041
AttachmentSize
PDF icon full_text.pdf219.55 KB
Abstract: 
The mathematical apparatus of simulation diffraction by spiral nanotubes of arbitrary chemical composition, whose structure is described with the use of Bravais cells, is developed. The case of electron microdiffraction by a single nanotube is considered, the distributions of intensity in layer planes and lengthways layer lines are calculated.
References: 

[1] http://ntrs.nasa.gov/search.jsp?R=20120012923

[2] http://tfy.tkk.fi/nanomat/PDF%20publications/cm300308k.pdf

[3] http://www.chalcogen.infim.ro/33_Buang.pdf

[4] Nasyrov I., Pashin D., Khalitov Z. and Valeeva D.: Sci. Israel-Techn. Adv., 2010, 12, 63.

[5] Jagodzinski H. and Kunze G.: News Jb. Mineral. Mh., 1954, 95.

[6] Whittaker E.: Acta Cryst., 1955, 8, 265.
https://doi.org/10.1107/S0365110X55000868

[7] Galimov E. and Khalitov Z.: Modelirovanie Difrakcii Nanotrubkami. Izd-vo Kazan. Gos. Techn. Univ., Kazan 2007.

[8] Radovsky G., Popovitz-Biro R., Staiger M. et al.: Angew. Chem. Intl. Edn., 2011, 50, 12316.
https://doi.org/10.1002/anie.201104520

[9] Figovsky O., Pashin D., Nasyrov I. et al.: Chem. & Chem. Techn., 2012, 6, 43.

[10] Figovsky O., Pashin D., Khalitov Z. et al.: Chem. & Chem. Techn., 2012, 6, 167.

[11] Gricaenko G., Zviagin B., Boiarskaia R. et al.: Metody Elektronnoi Microskopii Mineralov. Nauka, Moskwa 1969.

[12] Wittaker E.: Acta Cryst., 1967, 10, 149.
https://doi.org/10.1107/S0365110X57000511