Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Production of Biodiesel Without Catalyst Separation with Palm Oil Interesterification Process Using Essential Oil Biocatalyst

Elvianto Dwi Daryono1, Jimmy1, Harimbi Setyawati1
Affiliation: 
1 Department of Chemical Engineering, Faculty of Industrial Technology, National Institute of Technology, Jl. Raya Karanglo Km. 2, Malang 65143, Indonesia elviantodaryono@lecturer.itn.ac.id
DOI: 
https://doi.org/10.23939/chcht18.03.356
AttachmentSize
PDF icon full_text.pdf514.01 KB
Abstract: 
The transesterification is a method commonly used in the production of biodiesel. Therefore, this study aimed to investigate interesterification reaction of palm oil with methyl acetate using essential oil biocatalyst, specifically focusing on eugenol and cajuput oil. The operating parameters were: 250 g of palm oil, a molar ratio of palm oil:methyl acetate of 1:6, a reaction temperature of 60ºC, a stirring speed of 300 rpm, a biocatalyst of 0.75 wt. % in relation to oil, and reaction times of 15, 30, 45, 60, and 75 min. The palm oil, methyl acetate and biocatalyst reacted in a three-necked flask as a reactor under operating conditions. Additionally, simulations were performed using ChemDraw Professional 15.0 to analyze the molecular behavior of the reacting compounds.
References: 

[1] Casas, A.; Ramos, M. J.; Pérez, Á. New Trends in Biodiesel Production: Chemical Interesterification of Sunflower Oil with Methyl Acetate. Biomass Bioenergy 2011, 35, 1702-1709. https://doi.org/10.1016/j.biombioe.2011.01.003
https://doi.org/10.1016/j.biombioe.2011.01.003

[2] dos Santos Ribeiro, J.; Celante, D.; Simões, S. S.; Bassaco, M. M.; da Silva, C.; de Castilhos, F. Efficiency of Heterogeneous Catalysts in Interesterification Reaction from Macaw Oil (Acrocomia aculeata) and Methyl Acetate. Fuel 2017, 200, 499-505. https://doi.org/10.1016/j.fuel.2017.04.003
https://doi.org/10.1016/j.fuel.2017.04.003

[3] Interrante, L.; Bensaid, S.; Galletti, C.; Pirone, R.; Schiavo, B.; Scialdone, O.; Galia, A. Interesterification of Rapeseed Oil Catalysed by a Low Surface Area Tin (II) Oxide Heterogeneous Catalyst. Fuel Process. Technol. 2018, 177, 336-344. https://doi.org/10.1016/j.fuproc.2018.05.017
https://doi.org/10.1016/j.fuproc.2018.05.017

[4] Simões, S. S.; Ribeiro, J. S.; Celante, D.; Brondani, L. N.; Castilhos, F. Heterogeneous Catalyst Screening for Fatty Acid Methyl Esters Production through Interesterification Reaction. Renew. Energy 2020, 146, 719-726. https://doi.org/10.1016/j.renene.2019.07.023
https://doi.org/10.1016/j.renene.2019.07.023

[5] Galia, A.; Centineo, A.; Saracco, G.; Schiavo, B.; Scialdone, O. Interesterification of Rapeseed Oil Catalyzed by Tin Octoate. Biomass Bioenergy 2014, 67, 193-200. https://doi.org/10.1016/j.biombioe.2014.04.025
https://doi.org/10.1016/j.biombioe.2014.04.025

[6] Nunes, A. L. B.; Castilhos, F. Chemical Interesterification of Soybean Oil and Methyl Acetate to FAME Using CaO as Catalyst. Fuel 2020, 267, 117264. https://doi.org/10.1016/j.fuel.2020.117264
https://doi.org/10.1016/j.fuel.2020.117264

[7] Tian, Y.; Xiang, J.; Verni, C. C.; Soh, L. Fatty Acid Methyl Ester Production via Ferric Sulfate Catalyzed Interesterification. Biomass Bioenergy 2018, 115, 82-87. https://doi.org/10.1016/j.biombioe.2018.04.013
https://doi.org/10.1016/j.biombioe.2018.04.013

[8] Dhawan, M. S.; Barton, S. C.; Yadav, G. D. Interesterification of Triglycerides with Methyl Acetate for the Co-Production Biodiesel and Triacetin Using Hydrotalcite as a Heterogenous Base Catalyst. Catal. Today 2021, 375, 101-111. https://doi.org/10.1016/j.cattod.2020.07.056
https://doi.org/10.1016/j.cattod.2020.07.056

[9] Chuepeng, S.; Komintarachat, C. Interesterification Optimization of Waste Cooking Oil and Ethyl Acetate over Homogeneous Catalyst for Biofuel Production with Engine Validation. Appl. Energy 2018, 232, 728-739. https://doi.org/10.1016/j.apenergy.2018.09.085
https://doi.org/10.1016/j.apenergy.2018.09.085

[10] Daryono, E. D.; Wardana, I. N. G.; Cahyani, C.; Hamidi, N. Biodiesel Production Process without Glycerol By-Product with Base Catalyst: Effect of Reaction Time and Type of Catalyst on Kinetic Energy and Solubility. IOP Conf. Ser.: Mater. Sci. Eng. 2021, 1053, 1-7. https://doi.org/10.1088/1757-899x/1053/1/012058
https://doi.org/10.1088/1757-899X/1053/1/012058

[11] Daryono, E. D.; Wardana, I. N. G.; Cahyani, C.; Hamidi, N. Interesterification Process of Palm Oil Using Base Catalyst : The Effect of Stirring Speed and Type of Catalyst on Kinetic Energy and Dipole Moment. Int. J. Adv. Sci. Eng. Inf. Technol. 2022, 12, 1580-1585.
https://doi.org/10.18517/ijaseit.12.4.12500

[12] Nguyen, H. C.; Nguyen, M. L.; Wang, F. M.; Juan, H. Y.; Su, C. H. Biodiesel Production by Direct Transesterification of Wet Spent Coffee Grounds Using Switchable Solvent as a Catalyst and Solvent. Bioresour. Technol. 2020, 296, 122334. https://doi.org/10.1016/j.biortech.2019.122334
https://doi.org/10.1016/j.biortech.2019.122334

[13] Tavares, G. R.; Gonçalves, J. E.; dos Santos, W. D.; da Silva, C. Enzymatic Interesterification of Crambe Oil Assisted by Ultrasound. Ind. Crops Prod. 2017, 97, 218-223. https://doi.org/10.1016/j.indcrop.2016.12.022
https://doi.org/10.1016/j.indcrop.2016.12.022

[14] Goembira, F.; Matsuura, K.; Saka, S. Biodiesel Production from Rapeseed Oil by Various Supercritical Carboxylate Esters. Fuel 2012, 97, 373-378. https://doi.org/10.1016/j.fuel.2012.02.051
https://doi.org/10.1016/j.fuel.2012.02.051

[15] Maddikeri, G. L.; Pandit, A. B.; Gogate, P. R. Ultrasound Assisted Interesterification of Waste Cooking Oil and Methyl Acetate for Biodiesel and Triacetin Production. Fuel Process. Technol. 2013, 116, 241-249. https://doi.org/10.1016/j.fuproc.2013.07.004
https://doi.org/10.1016/j.fuproc.2013.07.004

[16] Maddikeri, G. L.; Gogate, P. R.; Pandit, A. B. Intensified Synthesis of Biodiesel Using Hydrodynamic Cavitation Reactors Based on the Interesterification of Waste Cooking Oil. Fuel 2014, 137, 285-292. https://doi.org/10.1016/j.fuel.2014.08.013
https://doi.org/10.1016/j.fuel.2014.08.013

[17] Tan, K. T.; Lee, K. T.; Mohamed, A. R. Prospects of Non-Catalytic Supercritical Methyl Acetate Process in Biodiesel Production. Fuel Process. Technol. 2011, 92, 1905-1909. https://doi.org/10.1016/j.fuproc.2011.05.009
https://doi.org/10.1016/j.fuproc.2011.05.009

[18] Purnami, Wardana, I. N. G.; Hamidi, N.; Sasongko, M. N.; Darmadi, D. B. The Effect of Rhodium (III) Sulfate and Clove Oil Catalysts on the Droplet Combustion Characteristics of Castor Oil. Int. J. Integr. Eng. 2019, 11, 66-71. https://doi.org/10.30880/ijie.2019.11.05.009
https://doi.org/10.30880/ijie.2019.11.05.009

[19] Marlina, E.; Basjir, M.; Ichiyanagi, M.; Suzuki, T.; Gotama, G. J.; Anggono, W. The Role of Eucalyptus Oil in Crude Palm Oil as Biodiesel Fuel. Automot. Exp. 2020, 3, 33-38. https://doi.org/10.31603/ae.v3i1.3257
https://doi.org/10.31603/ae.v3i1.3257

[20] Daryono, E.D. Reactive Extraction Process in Isolation of Eugenol of Clove Essential Oil (Syzigium aromaticum) Based on Temperature and Time Process. Int. J. Chemtech Res. 2015, 8, 564-569.

[21] Pullen, J.; Saeed, K. Investigation of the Factors Affecting the Progress of Base-Catalyzed Transesterification of Rapeseed Oil to Biodiesel FAME. Fuel Process. Technol. 2015, 130, 127-135. https://doi.org/10.1016/j.fuproc.2014.09.013
https://doi.org/10.1016/j.fuproc.2014.09.013

[22] Buchori, L.; Anggoro, D. D.; Ma'ruf, A. Biodiesel Synthesis from the Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones. Chem. Chem. Technol. 2021, 15, 583-590. https://doi.org/10.23939/chcht15.04.583
https://doi.org/10.23939/chcht15.04.583

[23] Yoosa, P.; Srimongkol, S.; Yuttawiriya, R. The Effect Moisture Residue in Oil Palm Fruits with Microwave Technique: Quantifying the Significant Factor of Residual Moisture as the Process Parameter for Commercial Sterilization. J. Adv. Agric. Technol. 2022, 9, 1-8.
https://doi.org/10.18178/joaat.9.1.1-8

[24] Shao, J.; Agblevor, F. A. New Rapid Method for the Determination of Total Acid Number (Tan) of Bio-oils. American Journal of Biomass Bioenergy 2015, 4, 1-9.
https://doi.org/10.7726/ajbb.2015.1001

[25] Daryono, E.D.; Sinaga, E. J. Rapid in situ Transesterification of Papaya seeds to Biodiesel with the Aid of Co-Solvent. Int. J. Renew. Energy Res. 2017, 7, 379-385.

[26] Ali, R. M.; Elkatory, M. R.; Hamad, H. A. Highly Active and Stable Magnetically Recyclable CuFe2O4 as a Heterogenous Catalyst for Efficient Conversion of Waste Frying Oil to Biodiesel. Fuel 2020, 268, 117297. https://doi.org/10.1016/j.fuel.2020.117297
https://doi.org/10.1016/j.fuel.2020.117297

[27] Deska, A.; Zulhadjri, Tetra, O. N.; Efdi, M.; Syukri. Clay Enriched with Ca2+ and Cu2+ as the Catalyst for the Production of Methyl Esters from CPO on a Laboratory Scale. Chem. Chem. Technol. 2022, 16, 678-683. https://doi.org/10.23939/chcht16.04.678
https://doi.org/10.23939/chcht16.04.678

[28] Soebiyakto, G.,; Wardana, I. N. G.; Hamidi, N.; Yuliati, L. Addition of Bio-Additive as a Catalyst of Burning Vegetable Oil Influenced by 4 Pole Magnetic Field. East.-Eur. J. Enterp. Technol. 2020, 2(6 (104), 46-55. https://doi.org/10.15587/1729-4061.2020.198308
https://doi.org/10.15587/1729-4061.2020.198308