Production of Biodiesel Without Catalyst Separation with Palm Oil Interesterification Process Using Essential Oil Biocatalyst
Attachment | Size |
---|---|
full_text.pdf | 514.01 KB |
[1] Casas, A.; Ramos, M. J.; Pérez, Á. New Trends in Biodiesel Production: Chemical Interesterification of Sunflower Oil with Methyl Acetate. Biomass Bioenergy 2011, 35, 1702-1709. https://doi.org/10.1016/j.biombioe.2011.01.003
https://doi.org/10.1016/j.biombioe.2011.01.003
[2] dos Santos Ribeiro, J.; Celante, D.; Simões, S. S.; Bassaco, M. M.; da Silva, C.; de Castilhos, F. Efficiency of Heterogeneous Catalysts in Interesterification Reaction from Macaw Oil (Acrocomia aculeata) and Methyl Acetate. Fuel 2017, 200, 499-505. https://doi.org/10.1016/j.fuel.2017.04.003
https://doi.org/10.1016/j.fuel.2017.04.003
[3] Interrante, L.; Bensaid, S.; Galletti, C.; Pirone, R.; Schiavo, B.; Scialdone, O.; Galia, A. Interesterification of Rapeseed Oil Catalysed by a Low Surface Area Tin (II) Oxide Heterogeneous Catalyst. Fuel Process. Technol. 2018, 177, 336-344. https://doi.org/10.1016/j.fuproc.2018.05.017
https://doi.org/10.1016/j.fuproc.2018.05.017
[4] Simões, S. S.; Ribeiro, J. S.; Celante, D.; Brondani, L. N.; Castilhos, F. Heterogeneous Catalyst Screening for Fatty Acid Methyl Esters Production through Interesterification Reaction. Renew. Energy 2020, 146, 719-726. https://doi.org/10.1016/j.renene.2019.07.023
https://doi.org/10.1016/j.renene.2019.07.023
[5] Galia, A.; Centineo, A.; Saracco, G.; Schiavo, B.; Scialdone, O. Interesterification of Rapeseed Oil Catalyzed by Tin Octoate. Biomass Bioenergy 2014, 67, 193-200. https://doi.org/10.1016/j.biombioe.2014.04.025
https://doi.org/10.1016/j.biombioe.2014.04.025
[6] Nunes, A. L. B.; Castilhos, F. Chemical Interesterification of Soybean Oil and Methyl Acetate to FAME Using CaO as Catalyst. Fuel 2020, 267, 117264. https://doi.org/10.1016/j.fuel.2020.117264
https://doi.org/10.1016/j.fuel.2020.117264
[7] Tian, Y.; Xiang, J.; Verni, C. C.; Soh, L. Fatty Acid Methyl Ester Production via Ferric Sulfate Catalyzed Interesterification. Biomass Bioenergy 2018, 115, 82-87. https://doi.org/10.1016/j.biombioe.2018.04.013
https://doi.org/10.1016/j.biombioe.2018.04.013
[8] Dhawan, M. S.; Barton, S. C.; Yadav, G. D. Interesterification of Triglycerides with Methyl Acetate for the Co-Production Biodiesel and Triacetin Using Hydrotalcite as a Heterogenous Base Catalyst. Catal. Today 2021, 375, 101-111. https://doi.org/10.1016/j.cattod.2020.07.056
https://doi.org/10.1016/j.cattod.2020.07.056
[9] Chuepeng, S.; Komintarachat, C. Interesterification Optimization of Waste Cooking Oil and Ethyl Acetate over Homogeneous Catalyst for Biofuel Production with Engine Validation. Appl. Energy 2018, 232, 728-739. https://doi.org/10.1016/j.apenergy.2018.09.085
https://doi.org/10.1016/j.apenergy.2018.09.085
[10] Daryono, E. D.; Wardana, I. N. G.; Cahyani, C.; Hamidi, N. Biodiesel Production Process without Glycerol By-Product with Base Catalyst: Effect of Reaction Time and Type of Catalyst on Kinetic Energy and Solubility. IOP Conf. Ser.: Mater. Sci. Eng. 2021, 1053, 1-7. https://doi.org/10.1088/1757-899x/1053/1/012058
https://doi.org/10.1088/1757-899X/1053/1/012058
[11] Daryono, E. D.; Wardana, I. N. G.; Cahyani, C.; Hamidi, N. Interesterification Process of Palm Oil Using Base Catalyst : The Effect of Stirring Speed and Type of Catalyst on Kinetic Energy and Dipole Moment. Int. J. Adv. Sci. Eng. Inf. Technol. 2022, 12, 1580-1585.
https://doi.org/10.18517/ijaseit.12.4.12500
[12] Nguyen, H. C.; Nguyen, M. L.; Wang, F. M.; Juan, H. Y.; Su, C. H. Biodiesel Production by Direct Transesterification of Wet Spent Coffee Grounds Using Switchable Solvent as a Catalyst and Solvent. Bioresour. Technol. 2020, 296, 122334. https://doi.org/10.1016/j.biortech.2019.122334
https://doi.org/10.1016/j.biortech.2019.122334
[13] Tavares, G. R.; Gonçalves, J. E.; dos Santos, W. D.; da Silva, C. Enzymatic Interesterification of Crambe Oil Assisted by Ultrasound. Ind. Crops Prod. 2017, 97, 218-223. https://doi.org/10.1016/j.indcrop.2016.12.022
https://doi.org/10.1016/j.indcrop.2016.12.022
[14] Goembira, F.; Matsuura, K.; Saka, S. Biodiesel Production from Rapeseed Oil by Various Supercritical Carboxylate Esters. Fuel 2012, 97, 373-378. https://doi.org/10.1016/j.fuel.2012.02.051
https://doi.org/10.1016/j.fuel.2012.02.051
[15] Maddikeri, G. L.; Pandit, A. B.; Gogate, P. R. Ultrasound Assisted Interesterification of Waste Cooking Oil and Methyl Acetate for Biodiesel and Triacetin Production. Fuel Process. Technol. 2013, 116, 241-249. https://doi.org/10.1016/j.fuproc.2013.07.004
https://doi.org/10.1016/j.fuproc.2013.07.004
[16] Maddikeri, G. L.; Gogate, P. R.; Pandit, A. B. Intensified Synthesis of Biodiesel Using Hydrodynamic Cavitation Reactors Based on the Interesterification of Waste Cooking Oil. Fuel 2014, 137, 285-292. https://doi.org/10.1016/j.fuel.2014.08.013
https://doi.org/10.1016/j.fuel.2014.08.013
[17] Tan, K. T.; Lee, K. T.; Mohamed, A. R. Prospects of Non-Catalytic Supercritical Methyl Acetate Process in Biodiesel Production. Fuel Process. Technol. 2011, 92, 1905-1909. https://doi.org/10.1016/j.fuproc.2011.05.009
https://doi.org/10.1016/j.fuproc.2011.05.009
[18] Purnami, Wardana, I. N. G.; Hamidi, N.; Sasongko, M. N.; Darmadi, D. B. The Effect of Rhodium (III) Sulfate and Clove Oil Catalysts on the Droplet Combustion Characteristics of Castor Oil. Int. J. Integr. Eng. 2019, 11, 66-71. https://doi.org/10.30880/ijie.2019.11.05.009
https://doi.org/10.30880/ijie.2019.11.05.009
[19] Marlina, E.; Basjir, M.; Ichiyanagi, M.; Suzuki, T.; Gotama, G. J.; Anggono, W. The Role of Eucalyptus Oil in Crude Palm Oil as Biodiesel Fuel. Automot. Exp. 2020, 3, 33-38. https://doi.org/10.31603/ae.v3i1.3257
https://doi.org/10.31603/ae.v3i1.3257
[20] Daryono, E.D. Reactive Extraction Process in Isolation of Eugenol of Clove Essential Oil (Syzigium aromaticum) Based on Temperature and Time Process. Int. J. Chemtech Res. 2015, 8, 564-569.
[21] Pullen, J.; Saeed, K. Investigation of the Factors Affecting the Progress of Base-Catalyzed Transesterification of Rapeseed Oil to Biodiesel FAME. Fuel Process. Technol. 2015, 130, 127-135. https://doi.org/10.1016/j.fuproc.2014.09.013
https://doi.org/10.1016/j.fuproc.2014.09.013
[22] Buchori, L.; Anggoro, D. D.; Ma'ruf, A. Biodiesel Synthesis from the Used Cooking Oil Using CaO Catalyst Derived from Waste Animal Bones. Chem. Chem. Technol. 2021, 15, 583-590. https://doi.org/10.23939/chcht15.04.583
https://doi.org/10.23939/chcht15.04.583
[23] Yoosa, P.; Srimongkol, S.; Yuttawiriya, R. The Effect Moisture Residue in Oil Palm Fruits with Microwave Technique: Quantifying the Significant Factor of Residual Moisture as the Process Parameter for Commercial Sterilization. J. Adv. Agric. Technol. 2022, 9, 1-8.
https://doi.org/10.18178/joaat.9.1.1-8
[24] Shao, J.; Agblevor, F. A. New Rapid Method for the Determination of Total Acid Number (Tan) of Bio-oils. American Journal of Biomass Bioenergy 2015, 4, 1-9.
https://doi.org/10.7726/ajbb.2015.1001
[25] Daryono, E.D.; Sinaga, E. J. Rapid in situ Transesterification of Papaya seeds to Biodiesel with the Aid of Co-Solvent. Int. J. Renew. Energy Res. 2017, 7, 379-385.
[26] Ali, R. M.; Elkatory, M. R.; Hamad, H. A. Highly Active and Stable Magnetically Recyclable CuFe2O4 as a Heterogenous Catalyst for Efficient Conversion of Waste Frying Oil to Biodiesel. Fuel 2020, 268, 117297. https://doi.org/10.1016/j.fuel.2020.117297
https://doi.org/10.1016/j.fuel.2020.117297
[27] Deska, A.; Zulhadjri, Tetra, O. N.; Efdi, M.; Syukri. Clay Enriched with Ca2+ and Cu2+ as the Catalyst for the Production of Methyl Esters from CPO on a Laboratory Scale. Chem. Chem. Technol. 2022, 16, 678-683. https://doi.org/10.23939/chcht16.04.678
https://doi.org/10.23939/chcht16.04.678
[28] Soebiyakto, G.,; Wardana, I. N. G.; Hamidi, N.; Yuliati, L. Addition of Bio-Additive as a Catalyst of Burning Vegetable Oil Influenced by 4 Pole Magnetic Field. East.-Eur. J. Enterp. Technol. 2020, 2(6 (104), 46-55. https://doi.org/10.15587/1729-4061.2020.198308
https://doi.org/10.15587/1729-4061.2020.198308