Polymerization of Ethylene with Catalyst Mixture in the Presence of Chain Shuttling Agent

Roberto Martins, Letícia Quinello, Giuliana Souza and Maria Marques
Affiliation: 
Instituto de Macromoléculas Eloisa Mano IMA (UFRJ) Cidade Universitária. Av. Horácio Macedo, 2.030. Centro de Tecnologia. Prédio do Bloco J. Rio de Janeiro. RJ. Brasil fmarques@ima.ufrj.br
DOI: 
https://doi.org/10.23939/chcht06.02.153
AttachmentSize
PDF icon full_text.pdf935.76 KB
Abstract: 
Mixture of two catalysts in one reactor for ethylene/α-olefin copolymerization in the solution process can result in the combination of microstructures related to both catalysts in the polymer framework. Thus, novel polymer configuration is synthesized, which is characterized by containing sequences of monomers produced with each catalyst in the same polymer chain. Adding a reversible transfer agent (CSA) to the binary system enables the production of new block copolymers with enhanced properties. Late transition metal catalysts, such as α-diimine nickel catalyst when activated with methylaluminoxane (MAO) show high activity towards olefin polymerization and produces highly branched homopolymers. On the other hand, C2 symmetry metallocene catalysts produce linear polyethylenes. This paper describes the synthesis of ethylene homopolymer with amorphous and crystalline blocks using a binary mixture containing a nickel catalyst with α-diimine ligand, which produces ф highly branched polyethylene (soft PE) and a metallocene (rac-ethylene bis(H4-indenyl)ZrCl2) that converts ethylene into polyethylene with high activities and melting temperatures (hard PE). The influence of polymerization temperature and CSA concentration were investigated. The polymeric materials were characterized by density, thermal properties, X-ray diffractometry and dynamic-mechanical properties.
References: 

[1] Hustad P.: Science, 2009, 325, 704.
https://doi.org/10.1126/science.1174927

[2] Galli P. and Vecellio G.: Program Polym. Sci., 2001, 26, 1287.
https://doi.org/10.1016/S0079-6700(01)00029-6

[3] Mitani M., Saito J., Ishii S., Nakayama Y., Makio H., Matsukawa N., Matsui S., Mohri J., Furuyama R., Terao H., Bando H., Tanaka H., Fujita T.: The Chem. Rec., 2004, 4, 137.
https://doi.org/10.1002/tcr.20010

[4] Beigzadeh D., Soares J. and Duever T.: Macromolecular Symposia, 2001, 173, 179.
https://doi.org/10.1002/1521-3900(200108)173:1<179::AID-MASY179>3.0.CO;2-2

[5] Krevelen D. and Nijenhuis K.: Properties of Polymers: their Correlation with Chemical Structure, their Numerical Estimation and Prediction from Additive Group Contributions; Copyright 4th edn, Elsevier, Amsterdam 2009.
https://doi.org/10.1016/B978-0-08-054819-7.00001-7

[6] Kaminsky W.: Macromol. Chem. Physics, 2008, 209, 459.
https://doi.org/10.1002/macp.200700575

[7] Caprio M., Serra M., Bowen D. and Grassi A.: Macromolecules, 2002, 35, 9315.
https://doi.org/10.1021/ma021014n

[8] Mano E. and Mendes L.: [in:] Blьcher E.: (Ed.) Introduзгo a polнmeros, 2Є ediзгo. Sгo Paulo 1999, 92-93.

[10] Hustad P., Kuhlman R., Arriola D. et al.: Macromolecules, 2007, 40, 7061.
https://doi.org/10.1021/ma0717791

[11] Hiltner A., Wang H., Khariwala D. et al.: 64th Annual Technical Conference - SPE, USA, Charlotte 2006, 1000.

[12] Arriola D., Devore D., Carnahan E. et al.: Pat. USA WO 2005/090425 A1, Publ. Sep. 29, 2005.

[13] Arriola D., Devore D., Carnahan E. et al.: Pat. USA WO 2005/090427 A2, Publ. Sep. 29, 2005.

[14] Arriola D., Carnahan E., Cheung Y. et al.: Pat. USA 2007/0167578 A1, Publ. Mar. 17, 2005.

[15] Tynys E., Eilertsen J., Seppдllд J., Rytter E.: J. Polym. Sci. A, 2007, 45, 1364.
https://doi.org/10.1002/pola.21908

[16] Kuhlman, R.L., Wenzel, T.T.: Macromolecules, 2008, 41, 4090.
https://doi.org/10.1021/ma8004313

[17] Arriola D., Carnahan E., Bokota M. et al.: Pat. USA WO 2006/101597, Publ. Sep. 28, 2006.

[18] Gibson V.C.: Science, 2009, 312, 703.
https://doi.org/10.1126/science.1127258

[19] Pan L., Zhang K., Nishiura M. and Hou Z.: Angew. Chem. Int. Ed., 2011, 50, 1.
https://doi.org/10.1002/anie.201006633

[20] Zhang M., Karjala T., Jain P.: Ind. Eng. Chem. Res. 2010, 49, 8135.
https://doi.org/10.1021/ie100530p

[21] Wang H., Khariwala D.U., Cheung W., Chum, S.P.; Hiltner, A.; Baer, E.: Macromolecules, 2008, 40, 2852.
https://doi.org/10.1021/ma061680e

[22] Khariwala D., Taha A., Chum S., Hiltner A., Baer E.: Polymer, 2008, 49, 1365.
https://doi.org/10.1016/j.polymer.2007.12.046

[23] Merna J., Hošťálek Z., Peleška J., Roda J.: Polymer, 2009, 50, 5016.
https://doi.org/10.1016/j.polymer.2009.08.030

[24] Moraes S.: PhD thesis, Instituto de Macromoléculas Professora Eloisa Mano, UFRJ, Rio de Janeiro 2009.

[25] Tynys, E., Eilertsen, J.L., Seppällä, J.V., Rytter, E.: J. Polym. Sci. A, 2007, 45, 1364.
https://doi.org/10.1002/pola.21908

[26] Chien J., Iwamoto Y. and Rausch M.: J. Polym. Sci. A, 1999, 37, 2439.
https://doi.org/10.1002/(SICI)1099-0518(19990715)37:14<2439::AID-POLA18>3.0.CO;2-7

[27] Bastos Q. and Marques M.F.V.: J. Polym. Sci. A, 2005, 43, 263.
https://doi.org/10.1002/pola.20494

[28] Guan Z.: Metal catalysts in olefin polymerization. Topic in Organometallic Chemistry. Springer, Berlin-Heidelberg 2009.
https://doi.org/10.1007/978-3-540-87751-6

[29] Canevarolo S.: Tйcnicas de caracterizaзгo de polнmeros. Sгo Carlos-SP, 2007.

[30] Zuo F., Burger C., Chen X. et al.: Macromolecules, 2010, 43, 1922.
https://doi.org/10.1021/ma902105v

[31] Crist B. and Mirabella F.: J. Polym. Sci. B, 1999, 37, 3131.
https://doi.org/10.1002/(SICI)1099-0488(19991101)37:21<3131::AID-POLB22>3.0.CO;2-M

[32] Wang H., Taha A., Chum S. et al.: http://www.dow.com/infuse/lit/índex.htm.

[33] Britovsek G., Cohen S., Gibson V. et al.: Angew. Chem. Int. Ed., 2002, 41, 489.
https://doi.org/10.1002/1521-3773(20020201)41:3<489::AID-ANIE489>3.0.CO;2-C