Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Obtaining and Studying Promising Types of Natural Sorbents for Modifying Mineral Fertilizers

Viktoriia Vakal1, Tetyana Izmodenova1, Serhii Vakal1, Kyryl Shepeta2, Myroslav Malovanyy3
Affiliation: 
1 Research Institute of Mineral Fertilizers and Pigments of Sumy State University, 116 Kharkivska St., Sumy 40007, Ukraine 2 Limited liability company “CROP-INCREASE”, 8 1St Svoboda lane, Romny 42000, Ukraine 3 Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine vsvakal@gmail.com
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
This article discusses the production of high-performance fertilizers with promising modifiers. A study of various types of sorbents has shown that the nanoporous structure allows controlling their dissolution in the soil and reducing nutrient losses and greenhouse gas emissions into the environment. Experiments were conducted to produce biochar from various organic raw materials by pyrolysis. The microporous structure of the obtained biofuel samples was studied by scanning microscopy with elemental microanalysis. The results of agrochemical studies showed that fertilizers are responsible for increasing the amount of biomass by 61.22-66.6%, and the influence of biomass was less, but significant, and amounted to 19.77-22.6%.
References: 

[1] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Yatsukh, K. Sewage Sludge as a Component to Create a Substrate for Biological Reclamation. Ecol. Eng. Environ. Technol. 2021, 22, 229–237. https://doi.org/10.12912/27197050/137863
[2] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Chornomaz, N.; Popovych, O.; Grechanik, R.; Symak, D. Review of the Global Experience in Reclamation of Disturbed Lands. Inzyn. Ekol. 2021, 22, 24–30. https://doi.org/10.12912/27197050/132097
[3] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Zhuk, V.; Masikevych, A.; Synelnikov, S. Innovative Creation Technologies for the Growth Substrate Based on the Man-Made Waste - Perspective Way for Ukraine to Ensure Biological Reclamation of Waste Dumps and Quarries. Int. J. Foresight Innov. Policy 2020, 14, 248–263. https://doi.org/10.1504/IJFIP.2020.111239
[4] Vakal, V.; Pavlenko, I; Vakal, S.; Hurets, L.; Ochowiak, M. Mathematical Modeling of Nutrient Release from Capsulated Fertilizers. Period. Polytechn. Chemic. Engin. 2020, 64, 562–568. https://doi.org/10.3311/PPch.14100
[5] Gumnitski, Ya.M.; Luta, O.V. Molecular-Diffusion Mass Transfer of Substance in Soil Medium. Theor. Found. Chem. Engin. 2014, 48, 414–419.
[6] Gil-Ortiz, R.; Naranjo, M.Á.; Ruiz-Navarro, A.; Atares, S.; García, C.; Zotarelli, L.; Bautista, S.; Vicente, O. Polymeric-Coated Nitrogen Fertilizer in Rice. Plants 2020, 9, 1183. https://doi.org/10.3390/plants9091183
[7] Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H; Tang, S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants (Basel) 2021, 1, 238. https://doi.org/10.3390/plants10020238
[8] Vakal, S.; Yanovska, A.; Vakal, V.; Artyukhov, A.; Shkola, V.; Yarova, T.; Dmitrikov, V; Krmela, J.; Malovanyy, M. Minimization of Soil Pollution as a Result of the Use of Encapsulated Mineral Fertilizers. J. Ecol. Eng. 2020, 22, 221–230. https://doi.org/10.12911/22998993/128965
[9] Vakal, S.; Vakal, V.; Artyukhov, A.; Shkola, V.; Yanovska, A. New Method for Obtaining “Green” Encapsulated Fertilizers with Nanoporous Structure within the Concept of Sustainable Development. Clean. Techn. Environ. Policy 2023, 25, 963–977. https://doi.org/10.1007/s10098-022-02419-6
[10] Marinov, I.; Marinov, A.M. A Coupled Mathematical Model to Predict the Influence of Nitrogen Fertilization on Crop, Soil and Groundwater Quality. Water Resource Manag. 2015, 28, 5231–5246. https://doi.org/10.1007/s11269-014-0664-5
[11] Ptashnyk, V.; Bordun, I.; Malovanyy, M.; Chabecki, P.; Pieshkov, T. The Change of Structural Parameters of Nanoporous Activated Carbons under the Influence of Ultrasonic Radiation. Appl. Nanosci. 2020, 10, 4891–4899. https://doi.org/10.1007/s13204-020-01393-z
[12] Nahurskyi, N.; Malovanyy, M.; Bordun, I.; Szymczykiewicz, E. Magnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater: A Review. Chem. Chem. Technol. 2024, 18, 170–187. https://doi.org/10.23939/chcht18.02.170
[13] Kochubei, V.; Yaremchuk, Y.; Malovanyy, M.; Yaholnyk, S.; Slyuzar, A. Perspectives of Treatment of Water Environments from Pollutants with Ultrasound-Activated Bentonites. Chem. Chem. Technol. 2023, 17, 870–877. http://doi.org/10.23939/chcht17.04.870
[14] Miroshnichenko, D.; Shmeltser, K.; Kormer, M.; Sahalai, D.; Pyshyev, S.; Kukhar, O.; Korchak, B.; Chervinskyy T. Influence of Raw Materials and Technological Factors on the Sorption Properties of Blast-Fuel Coke. ChemEngineering 2024, 8, 30. https://doi.org/10.3390/chemengineering8020030
[15] Miroshnichenko, D.; Zhylina, М.; Shmeltser, К. Modern Use of Biochar in Various Technologies and Industries. A Review. Chem. Chem. Technol. 2024, 18, 232–243. https://doi.org/10.23939/chcht18.02.232
[16] Sinitsyna, A.O.; Karnozhitskiy, P.V.; Miroshnichenko, D.V.; Bilets, D.Yu. The Use of Brown Coal in Ukraine to Obtain Water-Soluble Sorbents. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 4, 5–10. https://doi.org/10.33271/nvngu/2022-4/005
[17] Miroshnichenko, D.; Malik, I.K. Prediction of the Higher Heats of Combustion of Plant Raw Materials Based on the Ultimate Analysis Data. Solid Fuel Chem. 2021, 55, 216–222. https://doi.org/10.3103/S0361521921040054
[18] Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Contreras, A.B.; Hassan, N.; El Rasoul, A.A. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2021, 15, 61–73. https://doi.org/10.23939/chcht15.01.061
[19] Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon Sorbents Based on Natural Raw Materials. Journl of Water and Land Devel. 2020, 47, 160–168. https://doi.org/10.24425/jwld.2020.135043
[20] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386–393. https://doi.org/10.23939/chcht14.03.386
[21] Aragão de Figueredo, N.; Marciano da Costa, L.; Azevedo Melo, C.L.; Siebeneichlerd, E. A.; Tronto, J. Characterization of Biochars from Different Sources and Evaluation of Release of Nutrients and Contaminants. Revista Ciência Agronômica 2017, 48, 395–403. https://doi.org/10.5935/1806-6690.20170046
[22] Khan, T.F.; Salma, M.U.; Hossain, S.A. Impacts of Different Sources of Biochar on Plant Growth Characteristics. Am. J. Plant Sci. 2018, 9, 1922–1934. https://doi.org/10.4236/ajps.2018.99139
[23] Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Сlean. Prod., 2019, 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282
[24] Qambrani, N.A.; Rahman, M.M.; Won, S.; Shim, S.; Ra, C. Biochar Properties and Eco-Friendly Applications for Climate Change Mitigation, Waste Management, and Wastewater Treatment: A Review. Renew. Sustain. Energ. Reviews 2017, 79, 255–273. https://doi.org/10.1016/j.rser.2017.05.057