Nanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application

Olena Makido1, Galyna Khovanets’1, Viktoria Kochubei2, Iryna Yevchuk1
1 Department of Physical Chemistry of Fossil Fuels L.M. Lytvynenko Institute of Physico-organic Chemistry and Coal Chemistry NAS of Ukraine 3а Naukova St., Lviv 79060, Ukraine; 2 Lviv Polytechnic National University, 12 S. Bandera St., Lviv 79013, Ukraine;
PDF icon full_text.pdf601.26 KB
Nanostructured “shell-shell” type catalysts, which consist of a magnetically sensitive core of cobalt ferrite and a protective layer of porous SiO2, have been synthesized. On the surface of porous SiO2 clusters of copper oxide are situated playing the role of catalytic centers. The structure of CoFe2O4 / SiO2 / CuO catalyst was confirmed by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Studies of the catalytic activity of the obtained catalysts were performed in the Fenton system on a model solution of methylene blue (MB). The catalytic activity of the composite in MB destruction reaches 99%. The high magnetic sensitivity of the obtained catalysts ensures their easy removal from the reaction medium. The catalysts demonstrated the possibility of reusability without loss of activity.

[1] Maximillian J., Brusseau M.L., Glenn E.P., Matthias A.D. Pollution and Environmental Perturbations in the Global System Environ. In Environmental and Pollution Science, 3rd ed.; Academic Press, 2019; pp 457-476.

[2] Inyinbor Adejumoke, A.; Adebesin Babatunde, O.; Oluyori Abimbola, P.; Adelani-Akande Tabitha, A.; Dada Adewumi, O.; Oreofe Toyin, A. Water Pollution: Effects, Prevention, and Climatic Impact. In Water Challenges of an Urbanizing World, 2018.

[3] Deng Y., Zhao R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167-176.

[4] Ganiyu, S.O.; Vieira dos Santos, E.; Tossi de Araújo Costa, E.C.; Martínez-Huitle, C.A. Electrochemical Advanced Oxidation Processes (EAOPs) as Alternative Treatment Techniques for Carwash Wastewater Reclamation. Chemosphere 2018, 211, 998-1006.

[5] Pham, A. N.; Xing, G.; Miller, Ch. J.; Waite, T. D. Fenton-like Copper Redox Chemistry Revisited: Hydrogen Peroxide and Superoxide Mediation of Copper-Catalyzed Oxidant Production. J. Catal. 2013, 301, 54-64.

[6] Yang, Y.; Liu, Y.; Fang, X.; Miao, W.; Chen, X.; Sun, J.; Ni, B.-J.; Mao, S. Heterogeneous Electro-Fenton Catalysis with HKUST-1-derived Cu@C Decorated in 3D Graphene Network. Chemosphere 2020, 243, 125423.

[7] Bonfim, D.P.F.; Santana, C.S.; Batista, M.S.; Fabiano, D.P. Catalytic Evaluation of CuO/[Si]MCM-41 in Fenton-like Reactions. Chem. Eng. Technol. 2019, 42, 882-888.

[8] Ding, L.; Zhang, M.; Zhang, Y.; Yang, J.; Zheng, J.; Hayat, T.; Alharbi, N.S.; Hu, J. Tailoring the Nickel Nanoparticles Anchored on the Surface of Fe3O4@SiO2 Spheres for Nanocatalysis. Nanotechnology 2017, 28, 345601.

[9] Shi, B.-N.; Wan, J.-F.; Liu, Ch.-T.; Yu, X.-J.; Ma, F.-W. Synthesis of CoFe2O4/MCM-41/TiO2 Composite Microspheres and its Performance in Degradation of Phenol. Mater. Sci. Semicond. Process. 2015, 37, 241-249.

[10] Naĭden, E.P.; Zhuravlev, V. A.; Itin, V. I.; Terekhova, O.G.; Magaeva, A.A.; Ivanov, Yu.F. Magnetic Properties and Structural Parameters of Nanosized Oxide Ferrimagnet Powders Produced by Mechanochemical Synthesis from Salt Solutions. Phys. Solid State 2008, 50, 894-900.

[11] Dutta, B. K.; Abd Ellateif, T.M.; Maitra, S. Development of a Porous Silica Film by Sol-gel Process. Int. Sci. Index, Chem. Mol. Engin. 2011, 5, 34-38.

[12] Poreddy, R.; Engelbrekt, C.; Riisager, A. Copper Oxide as Efficient Catalyst for Oxidative Dehydrogenation of Alcohols with Air. Catal. Sci. Technol. 2015, 5, 2467-2477.

[13] Zedan, A. F.; Mohamed, A. T.; El-Shall, M. S.; Al-Qaradawi, S.Y.; Aljaber, A.S. Tailoring the Reducibility and Catalytic Activity of CuO Nanoparticles for Low Temperature CO Oxidation. RSC Adv. 2018, 8, 19499-19511.

[14] Fang, M.; Zheng, R.; Wu, Y.; Yue, D.; Qian, X.; Zhao, Y.; Bian, Z. CuO Nanosheet as a Recyclable Fenton-like Catalyst Prepared from Simulated Cu(II) Waste Effluents by Alkaline H2O2 Reaction. Environ. Sci. Nano 2019, 6, 105-114.

[15] Liu, X.; Zhang, J.; Guo, X.; Wu, S.; Wang, S. Porous α-Fe2O3 Decorated by Au Nanoparticles and their Enhanced Sensor Performance. Nanotechnology 2010, 21, 095501.

[16] Said, A.A.; Abd El-Salaam, K.M.; Hassan, E.A.; El-Awad, A.M.; Mohamed, M.M. A Study on the Thermal Decomposition of Iron-cobalt Mixed Hydroxides. J. Therm. Anal. 1993, 39, 309-321

[17] Osuntokun J., Ajibade P. A.: Structural and Thermal Studies of ZnS and CdS Nanoparticles in Polymer Matrices. J. Nanomater. 2016, 2016, 3296071.

[18] Rao, K.S.; Choudary, G.S.V.R.K.; Rao, K.H.; Sujatha, Ch. Structural and Magnetic Properties of Ultrafine CoFe2O4 Nanoparticles. Procedia Materials Science 2015, 10, 19-27.

[19] Waje, S. B.; Hashim, M.; Yusoff, W.M.D.W.; Abbas, Z. X-ray Diffraction Studies on Crystallite Size Evolution of CoFe2O4 Nanoparticles Prepared Using Mechanical Alloying and Sintering. Appl. Surf. Sci. 2010, 256, 3122-3127.

[20] Dolhov, B.N. Kataliz v orhanycheskoi khimii (2 Ed). Hosudarstvennoe nauchno-tekhnycheskoe izdatelʹstvo khymicheskoi literatury, 1959. (in Russia)

[21] Prozorova, D.A.; Afyneevskyj, A.V.; Knjazev, A.V. Zakonomernosti dezaktivatsii nanesennykh nikelevykh katalizatorov gidririvaniia sulfide-ionom. Žurnal Fizicheskoi Khimii 2019, 93, 1681. (in Russia)

[22] Cao, Z.-F.; Wen, X.; Chen, P.; Yang, F.; Ou, X.-L.; Wang, S.; Zhong, H. Synthesis of a Novel Heterogeneous Fenton Catalyst and Promote the Degradation of Methylene Blue by Fast Regeneration of Fe2+. Colloids Surf. A Physicochem. Eng. Asp. 2018, 549, 94-104.

[23] Yang, B.; Tian, Z.; Zhang, L.; Guo, Y.; Yan, S. Enhanced Heterogeneous Fenton Degradation of Methylene Blue by Nanoscale Zero Valent Iron (nZVI) Assembled on Magnetic Fe3O4/Reduced Graphene Oxide. J. Water Process Eng. 2015, 5, 101-111.