Monomolecular Micelles Based on Amphiphilic Invertible Polymers

Ananiy Kohut1, Andriy Voronov2 and Stanislav Voronov1
Affiliation: 
1 Lviv Polytechnic National University 12, S. Bandery str., 79013 Lviv, Ukraine; ananiy.kohut@gmail.com 2 North Dakota State University 1735 NDSU Research Park Dr., Fargo, ND, 58102, USA
DOI: 
https://doi.org/10.23939/chcht07.03.261
AttachmentSize
PDF icon full_text.pdf287.29 KB
Abstract: 
Using surface tension measurements, solubilization of dimethyl yellow dye and solvatochromic dye Et30, and fluorescence spectroscopy, amphiphilic polyesters containing alternated hydrophilic poly(ethylene glycol) fragments and lipophilic dicarboxylic acid or polytetrahydorfuran moieties in the polymer backbone have been shown to form monomolecular micelles in aqueous solutions at the concentrations of 10-7–10-4 %. These monomolecular micelles have been demonstrated to possess invertibility and respond to the change in a medium polarity.
References: 

[1] Xiong X. and Lavasanifar A.: Amphiphilic Block Copolymer Based Nanocarriers for Drug and Gene Delivery [in:] Prokop A. (Ed.), Intracellular Delivery. Fundamentals and Applications. Springer, Dordrecht 2011, 251-289.
https://doi.org/10.1007/978-94-007-1248-5_10

[2] Strauss U. and Jackson E.: J. Polym. Sci., 1951, 6, 649.
https://doi.org/10.1002/pol.1951.120060515

[3] Strauss U., Assony S., Jackson E. and Layton J.: J. Polym. Sci., 1952, 9, 509.
https://doi.org/10.1002/pol.1952.120090604

[4] Jackson E. and Strauss U.: J. Polym. Sci., 1951, 7, 473.
https://doi.org/10.1002/pol.1951.120070504

[5] Layton J., Jackson E. and Strauss U.: J. Polym. Sci., 1952, 9, 295.
https://doi.org/10.1002/pol.1952.120090402

[6] Strauss U. and Layton J.: J. Phys. Chem., 1953, 57, 352.
https://doi.org/10.1021/j150504a024

[7] Sadron Ch.: Angew.Chem. Internat. Edit., 1963, 2, 248.
https://doi.org/10.1002/anie.196302481

[8] Dobry A. and Boyer-Kawenoki F.: J. Polym. Sci., 1947, 2, 90.
https://doi.org/10.1002/pol.1947.120020111

[9] Hamley I.: Introduction to Soft Matter: Polymers, Colloids, Amphiphilies and Liquid Crystals. Wiley, Chichester 2000.

[10] Bresler S., Pyrkov L., Frenkel S., Layus L. et al.: Vysokomol. Soed., 1962, 4, 250.

[11] Gouanve F., Phuong-Nguyen H., Hamida Z. and Delmas G.: Colloid Polym. Sci., 2005, 283, 994.
https://doi.org/10.1007/s00396-004-1253-6

[12] Tanchuk Yu. and Pop G.: Zh. Kolloid. Khim., 1978, 40, 1209.

[13] Pop G., Pakhovchishin S., Mank Z., Kuprienko P. et al.: Kolloid. Zh., 1981, 43, 780.

[14] Boyko V.: Kolloid. Zh., 1976, 38, 539.

[15] Grosberg A. and Khokhlov A.: Statisticheskaya Fizika Makromolekul. Nauka, Moskwa 1989.

[16] Kabanov A., Nazarova I., Astafieva I., Batrakova E. et al.: Macromolecules, 1995, 28, 2303.
https://doi.org/10.1021/ma00111a026

[17] Alexandridis P., Holzwarth J. and Hatton T.: Macromolecules, 1994, 27, 2414.
https://doi.org/10.1021/ma00087a009

[18] Ganazzoli F.: J. Chem. Phys., 2000, 112, 1547.
https://doi.org/10.1063/1.480701

[19] Ganazzoli F., Raos G. and Allegra G.: Macromol. Theory Simul., 1999, 8, 65.
https://doi.org/10.1002/(SICI)1521-3919(19990101)8:1<65::AID-MATS65>3.0.CO;2-N

[20] Kurganskiy V., Puchin V., Voronov S. and Tokarev V. Kolloid. Zh., 1983, 45, 773.

[21] Kulman R.: Ponizhenie Poverkhnostogo Natyazheniya pri Adsorbtsii Makromolekul [in:] Lipatov Yu. (Ed.), Makromolekuly na Granitse Razdela Faz. Nauk. Dumka, Kyiv 1979, 31-39.

[22] Mandel M. and Stadhouder M.: Makromol. Chem., 1964, 80, 141.
https://doi.org/10.1002/macp.1964.020800112

[23] Chernikhov A. and Medvedev S.: Dokl. Akad. Nauk SSSR, 1968, 180, 913.

[24] Liu F. and Eisenberg A.: J. Am. Chem. Soc., 2003, 125, 15059.
https://doi.org/10.1021/ja038142r

[25] Basu S., Vutukuri D., Shyamroy S., Sandanaraj B. et al.: J. Am. Chem. Soc., 2004, 126, 9890.
https://doi.org/10.1021/ja047816a

[26] Voronov A., Kohut A., Tokarev V., Hevus O. et al.: Langmuir, 2006, 22, 1946.
https://doi.org/10.1021/la052225z

[27] Kohut A., Sieburg L., Vasylyev S., Kudina O. et al.: Amphiphilic Invertible Polymers (AIPs) [in:] Nagarajan R. (Ed.), Amphiphiles: Molecular Assembly and Applications. Oxford University Press Inc., Washington 2011, 205-224.

[28] Hevus I., Kohut A. and Voronov A.: Polym. Chem., 2011, 2, 2767.
https://doi.org/10.1039/c1py00399b

[29] Miura K., Saito Y., Horiuchi T., Kondo Y. et al.: J. Soc. Cosmet. Chem. Jpn., 1995, 29, 28.
https://doi.org/10.5107/sccj.29.28

[30] Saito Y.: J. Jpn. Oil Chem. Soc., 2000, 49, 1071.
https://doi.org/10.5650/jos1996.49.1071

[31] Suzuki K., Saito Y., Horiuchi T., Tokuoka Y. et al.: J. Soc. Cosmet. Chem. Jpn., 1996, 30, 330.
https://doi.org/10.5107/sccj.30.330

[32] Alexandridis P., Athanassiou V., Fukuda S. and Hatton T.: Langmuir, 1994, 10, 2604.
https://doi.org/10.1021/la00020a019

[33] Roe Ch.: J. Colloid Interface Sci., 1971, 37, 93.
https://doi.org/10.1016/0021-9797(71)90268-2

[34] Reichardt C.: Chem. Soc. Rev., 1992, 21, 147.
https://doi.org/10.1039/cs9922100147

[35] Drummond C., Grieser F. and Healy T.: Faraday Discuss. Chem. Soc., 1986, 81, 95.
https://doi.org/10.1039/dc9868100095

[36] Schmitz C., Mourran A., Keul H. and Muller M.: Macromol. Chem. Phys., 2008, 209, 1859.
https://doi.org/10.1002/macp.200800205

[37] Wilhelm M., Zhao C., Wang Y., Xu R. et al.: Macromolecules, 1991, 24, 1033.
https://doi.org/10.1021/ma00005a010

[38] Van Krevelen D.: Properties of Polymers: Correlations with Chemical Structure. Elsevier, London 1972.

[39] Kohut A., Tokarev V., Voronov A., Hevus O. et al.: Langmuir, 2006, 22, 6498.
https://doi.org/10.1021/la060162u