Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Modern Use of Biochar in Various Technologies and Industries. A Review

Denis Miroshnichenko1, Maryna Zhylina2,3, Kateryna Shmeltser4
Affiliation: 
1 National Technical University “Kharkiv Polytechnic Institute”, 2 Kirpychova St., 61002 Kharkiv, Ukraine 2 Riga Technical University, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, 3 Pulka St., 1007, Riga, Latvia 3 Institute of Agricultural Resources and Economics, Stende Research Centre, „Dizzemes‟, Dizstende, Libagu parish, Talsu County, 3258, Latvia 4 State University of Economics and Technology, 2, Vyzvolenya Square, 50005 Kriviy Rih, Ukraine denys.miroshnychenko@khpi.edu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.232
AttachmentSize
PDF icon full_text.pdf406.88 KB
Abstract: 
The article analyzes the use of biochar in various industries and the national economy (as a sorbent, fuel, reducing agent in the metallurgical industry, a component of coal coke blends, biocomposites, modification of explosives, fertilizers, etc.) It is noted that the direction of use depends on the quality and characteristics of biochar (size, physical properties, chemical composition), which are determined by the nature of the raw material, its chemical composition and carbonization temperature.
References: 

[1] Łaska, G.; Ige, A.R. A Review: Assessment of Domestic Solid Fuel Sources in Nigeria. Energies 2023, 16, 4722. https://doi.org/10.3390/en16124722
[2] Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Bautista Contreras, A.; Hassan, N.; Abd ElRasoul, A. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2021, 15, 61–73. https://doi.org/10.23939/chcht15.01.061
[3] Malik, I.K.; Miroshnichenko, D.V.; Contreras, A.B.; Hassan, N.; El Rasoul, A.A. Prediction of the Higher Heating Value of Charcoal. Pet. Coal 2022, 64, 100–105.
[4] Long, J.M.; Boyette, M.D. Analysis of Micronized Charcoal for Use in a Liquid Fuel Slurry. Energies 2017, 10, 25. https://doi.org/10.3390/en10010025
[5] Straka, T.J. Charcoal as a Fuel in the Ironmaking and Smelting Industries. Advances in Historical Studies 2017, 6, 56–64. https://doi.org/10.4236/ahs.2017.61004
[6] Miroshnichenko, D.; Shmeltser, K.; Kormer, M. Factors Affecting the Formation the Carbon Structure of coke and the Method of Stabilizing its Physical and Mechanical Properties. C-Journal of Carbon Research 2023, 9, 66. https://doi.org/10.3390/c9030066
[7] Bannikov, L.; Miroshnichenko, D.; Pylypenko, O.; Pyshyev, S.; Fedevych, O.; Meshchanin, V. Coke Quenching Plenum Equipment Corrosion and its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production. Chem. Chem. Technol. 2022, 16, 328–336. https://doi.org/10.23939/chcht16.02.328
[8] Drozdnik, I.D.; Miroshnichenko, D.V.; Shmeltser, E.O.; Kormer, M.V.; Pyshyev, S.V. Investigation of Possible Losses of Coal Raw Materials During its Technological Preparation for Coking Message. 1. The Actual Mass Variation of Coal in the Process of its Storage and Crushing. Pet. Coal 2019, 61, 631–637.
[9] Lyalyuk, V.P., Shmeltser, E.O., Kassim, D.A. Improving the technology production of coke for blast furnace smelting; Octan Print: Praga, 2022.
[10] Ng, K.W.; MacPhee, J.A.; Giroux, L.; Todoschuk, T. Reactivity of Bio-Coke with CO2. Fuel Process. Technol. 2011, 92, 801–804. https://doi.org/10.1016/j.fuproc.2010.08.005
[11] Jahanshani, S.; Mathieson, J.G.; Somerville, M.A.; Haque, N.; Norgate, T.E.; Deev, A.; Pan, Y.; Xie, D.; Ridgeway, P.; Zulli, P. Development of Low-Emission Integrated Steelmaking Process. J. Sustain. Metall. 2015, 1, 94–114. https://doi.org/10.1007/s40831-015-0008-6
[12] Suopajärvi, H.; Pongrácz, E.; Fabritius, T. The potential of Using Biomass-Based Reducing Agents in the Blast Furnace: A Review of Thermochemical Conversion Technologies and Assessments Related to Sustainability. Renew. Sust. Energ. Rev. 2013, 25, 511–528. https://doi.org/10.1016/j.rser.2013.05.005
[13] Suopajärvi, H.; Dahl, Е.; Kemppainen, А.; Gornostayev, S.; Koskela, А.; Fabritius, Т. Effect of Charcoal and Kraft-Lignin Addition on Coke Compression Strength and Reactivity. Energies 2017, 10, 1850. https://doi.org/10.3390/en10111850
[14] Suopajärvi, H.; Kemppainen, A.; Haapakangas, J.; Fabritius, T. Extensive Review of the Opportunities to Use Biomass-Based Fuels in Iron and Steelmaking Processes. J. Clean. Prod. 2017, 148, 709–734. https://doi.org/10.1016/j.jclepro.2017.02.029
[15] Sundqvist Ökvist, L.; Lundgren, M. Experiences of Bio-Coal Applications in the Blast Furnace Process-Opportunities and Limitations. Minerals 2021, 11, 863. https://doi.org/10.3390/min11080863
[16] Brooks, В.; Khoshk Rish, S.; Lomas, Н.; Jayasekara, А.; Tahmasebi, А. Advances in Low Carbon Cokemaking – Influence of Alternative Raw Materials and Coal Properties on Coke Quality. J Anal Appl Pyrolysis 2023, 173, 106083. https://doi.org/10.1016/j.jaap.2023.106083
[17] Suopajäarvi, H.; Umeki, K.; Mousa, E.; Hedayati, A.; Romard, H.; Kemppainen, A.; Wang, C.; Phounglamcheik, A.; Tuomikoski, S.; Norberg, N., et al. Use of Biomass in Integrated Steelmaking—Status Quo, Future Needs and Comparison to other Low-CO2 Steel Production Technologies. Appl. Energy 2018, 213, 384–407. https://doi.org/10.1016/j.apenergy.2018.01.060
[18] Mousa, E.; Wang, C.; Riesbeck, J.; Larsson, M. Biomass Applications in Iron and Steel Industry: An Overview of Challenges and Opportunities. Renew. Sust. Energ. Rev. 2016, 65, 1247–1266. https://doi.org/10.1016/j.rser.2016.07.061
[19] Mousa, E.A.; Ahmed, H.M.; Wang, C. Novel Approach towards Biomass Lignin Utilization in Ironmaking Blast Furnace. ISIJ Int. 2017, 57, 1788–96. https://doi.org/10.2355/isijinternational.ISIJINT-2017-127
[20] Mathieson, J.G.; Somerville, M.; Deev, A.; Jahanshahi, S. Utilization of biomass as an alternative fuel in ironmaking. In Iron Ore: Mineralogy, Processing and Environmental Sustainability, 1st ed.; Lu, L., Ed.; Woodhead Publ. Elsevier Ltd.: Cambridge, UK, Waltham, MA, USA, 2015; pp 581–609. https://doi.org/10.1016/B978-1-78242-156-6.00019-8
[21] Ooi, T.C.; Aries, E.; Ewan, B.C.; Thompson, D.; Anderson, D.R.; Fisher, R.; Fray, T.; Tognarelli, D. The Study of Sunflower Seed Husks as a Fuel in the Iron Ore Clinkering Process. Miner Eng 2008, 21, 167–77. https://doi.org/10.1016/j.mineng.2007.09.005
[22] Gan, M.; Fan, X.; Ji, Z.; Jiang, T.; Chen, X.; Yu, Z.; Li, G.; Yin, L. Application of Biomass Fuel in Iron Ore Clinkering: Influencing Mechanism and Emission Reduction. Ironmak. Steelmak. 2015, 42, 27–33. https://doi.org/10.1179/1743281214Y.0000000194
[23] Cheng, Z.; Yang, J.; Zhou, L.; Liu, Y.; Wang, Q. Characteristics of Charcoal Combustion and its Effects on Iron-Ore Clinkering Performance. Appl Energy 2016, 161, 364–374. https://doi.org/10.1016/j.apenergy.2015.09.095
[24] Amanat, N.; Tsafnat, N.; Loo, B.C.E.; Jones, A.S. Metallurgical Coke: An Investigation into Compression Properties and Microstructure Using X-ray Microtomography. Scr. Mater. 2009, 60, 92–95. https://doi.org/10.1016/j.scriptamat.2008.09.003
[25] Kim, S.Y.; Sasaki, Y. Simulation of Effect of Pore Structure on Coke Strength Using 3-dimensional Discrete Element Method. ISIJ Int. 2010, 50, 813–821. http://dx.doi.org/10.2355/isijinternational.50.813
[26] Haapakangas, J.; Uusitalo, J.; Mattila, O.; Kokkonen, T.; Porter, D.; Fabritius, T. A Method for Evaluating Coke Hot Strength. Steel Res. Int. 2013, 84, 65–71. https://doi.org/10.1002/srin.201200078
[27] Haapakangas, J.A.; Uusitalo, J.A.; Mattila, O.J.; Gornostayev, S.S.; Porter, D.A.; Fabritius, T. The Hot Strength of Industrial Cokes–Evaluation of Coke Properties that Affect Its High-Temperature Strength. Steel Res. Int. 2014, 85, 1608–1619. https://doi.org/10.1016/j.jfueco.2022.100082
[28] Bittencourt Marques, M.; Rodrigues Assis, A.; Benício Dias, S.M.; Harley Araújo, F.; Junqueira dos Santos, R. Co-injeção de gás natural moinha de carvão vegetal e carvão mineral no alto-forno “A” da Arcelormittal Monlevade. In Proceedings of the 41 Seminário de Redução de Minério de Ferro e Matérias-Primas Conference, Vila Vehla, Brazil, 12–16 September 2011. https://doi.org/10.5151/2594-357X-24003
[29] Mahottamananda, S.N.; Pal, Y.; Dinesh, M.; Ingenito, A. Beeswax – EVA/Activated-Charcoal-Based Fuels for Hybrid Rockets: Thermal and Ballistic Evaluation. Energies 2022, 15, 7578. https://doi.org/10.3390/en15207578
[30] Sanjay, M.R.; Arpitha, G.R.; Naik, L.L.; Gopalakrisha, K.; Yogesha, B. Applications of Natural Fibers and Its Composites: An Overview. Natural Resources 2016, 7, 108–114. http://dx.doi.org/10.4236/nr.2016.73011
[31] Delatorre, F.M.; Cupertino, G.F.M.; Oliveira, M.P.; da Silva Gomes, F.; Profeti, L.P.R.; Profeti, D.; Júnior, M.G.; de Azevedo, M.G.; Saloni, D.; Júnior, A.F.D. A Novel Approach to Charcoal Fine Waste: Sustainable Use as Filling of Polymeric Matrices. Polymers 2022, 14, 5525. https://doi.org/10.3390/polym14245525
[32] Delatorre, F.M.; Cupertino, G.F.M.; Pereira, A.K.S.; de Souza, E.C.; da Silva, Á.M.; Ucella Filho, J.G.M.; Saloni, D.; Profeti, L.P.R.; Profeti, D.; Dias Júnior, A.F. Photoluminous Response of Biocomposites Produced with Charcoal. Polymers 2023, 15, 3788. https://doi.org/10.3390/polym15183788
[33] Delatorre, F.M.; Pereira, A.K.S.; da Silva, Á.M.; de Souza, E.C.; Oliveira, M.P.; Profeti, D.; Profeti, L.P.R.; Dias Júnior, A.F. The Addition of Charcoal Fines Can Increase the Photodegradation Resistance of Polymeric Biocomposites. Environ. Sci. Proc. 2022, 13, 8. https://doi.org/10.3390/IECF2021-10812
[34] Das, S.C.; Ashek-E-Khoda, S.; Sayeed, M.A.; Paul, D.; Dhar, S.A.; Grammatikos, S.A. On the Use of Wood Charcoal Filler to Improve the Properties of Natural Fiber Reinforced Polymer Composites. Mater. Today Proc. 2021, 44, 926–929. https://doi.org/10.1016/j.matpr.2020.10.808
[35] Islam, M.T.; Das, S.C.; Saha, J.; Paul, D.; Islam, M.T.; Rahman, M.; Khan, M.A. Effect of Coconut Shell Powder as Filler on the Mechanical Properties of Coir-polyester Composites. Chem. Mater. Eng. 2017, 5, 75–82. https://doi.org/10.13189/cme.2017.050401
[36] Dahal, R.K.; Acharya, B.; Saha, G.; Bissessur, R.; Dutta, A.; Farooque, A. Biochar as a Filler in Glassfiber Reinforced Composites: Experimental Study of Thermal and Mechanical Properties. Compos. Part B Eng. 2019, 175, 107169. https://doi.org/10.1016/j.compositesb.2019.107169
[37] Zainal Abidin, Z.; Mamauod, S.N.L.; Romli, A.Z.; Sarkawi, S.S.; Zainal, N.H. Synergistic Effect of Partial Replacement of Carbon Black by Palm Kernel Shell Biochar in Carboxylated Nitrile Butadiene Rubber Composites. Polymers 2023, 15, 943. https://doi.org/10.3390/polym15040943
[38] Miyake, A.; Kobayashi, H.; Echigoya, H.; Kubota, S.; Wada, Y.; Ogata, Y.; Arai, H.; Ogawa, T. Detonation Characteristics of Ammonium Nitrate and Activated Carbon Mixtures. J Loss Prev Process Ind 2007, 20, 584–588. https://doi.org/10.1016/j.jlp.2007.04.026
[39] Nakamura, H.; Saeki, K.; Akiyoshi, M.; Takahasi, K. The Reaction of Ammonium Nitrate with Carbon Powder. J. Jpn. Explos. Soc. 2002, 63, 87–93.
[40] Miyake, A.; Echigoya, H.; Kobayashi, H.; Katoh, K.; Kubota, S.; Wada, Y.; Ogata, Y.; Ogawa, T. Detonation Velocity and Pressure of Ammonium Nitrate and Activated Carbon Mixtures. Mater. Sci. Forum 2008, 566, 107–112. https://doi.org/10.4028/www.scientific.net/MSF.566.107
[41] Miyake, A.; Echigoya, H.; Kobayashi, H.; Ogawa, T.; Katoh, K.; Kubota, S.; Wada, Y.; Ogata, Y. Non-Ideal Detonation Properties of Ammonium Nitrate and Activated Carbon Mixtures. Int. J. Mod. Phys. B 2008, 22, 1319–1324. https://doi.org/10.1142/S0217979208046712
[42] Kubota, S.; Saburi, T.; Ogata, Y.; Miyake, A. Non-Ideal Behaviour of Ammonium Nitrate Based High-Energetic Materials in Small Diameter Steel Tube. Sci. Technol. Energy Mater. 2013, 74, 61–65. https://doi.org/10.1142/S0217979208046712
[43] Biessikirski, A.; Gotovac Atlagi´c, S.; Pytlik, M.; Kuterasi´nski, Ł.; Dworzak, M.; Twardosz, M.; Nowak-Senderowska, D.; Napruszewska, B.D. The Influence of Microstructured Charcoal Additive on ANFO’s Properties. Energies 2021, 14, 4354. https://doi.org/10.3390/en14144354
[44] Heitkötter, J.; Marschner, B. Interactive Effects of Biochar Ageing in Soils Related to Feedstock, Pyrolysis Temperature, and Historic Charcoal Production. Geoderma 2015, 245–246, 56–64. https://doi.org/10.1016/j.geoderma.2015.01.012
[45] Muzyka, R.; Misztal, E.; Hrabak, J.; Banks, S.W.; Sajdak, M. Various Biomass Pyrolysis Conditions Influence the Porosity and Pore Size Distribution of Biochar. Energy 2023, 263, 126128. https://doi.org/10.1016/j.energy.2022.126128
[46] Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The Role of Biochar and Biochar-Compost in Improving Soil Quality and Crop Performance: A Review. Appl. Soil Ecol. 2017, 119, 156–170. https://doi.org/10.1016/j.apsoil.2017.06.008
[47] Idbella, M.; Baronti, S.; Giagnoni, L.; Renella, G.; Becagli, M.; Cardelli, R.; Maienza, A.; Vaccari, F.P.; Bonanomi, G. Long-Term Effects of Biochar on Soil Chemistry, Biochemistry, and Microbiota: Results from a 10-year Field Vineyard Experiment. Appl. Soil Ecol. 2023, 195, 105217. https://doi.org/10.1016/j.apsoil.2023.105217
[48] Hasnain, M.; Munir, N.; Abideen, Z.; Zulfiqar, F.; Koyro, H.W.; Ali El-Naggar, A.; Caçador, I.; Duarte, B.; Rinklebe, J.; Yong, J.W.H. Biochar-Plant Interaction and Detoxification Strategies under Abiotic Stresses for Achieving Agricultural Resilience: A Critical Review. Ecotoxicol. Environ. Saf. 2023, 249, 114408. https://doi.org/10.1016/j.ecoenv.2022.114408
[49] Nascimento, Í.V.D.; Fregolente, L.G.; Pereira, A.P.D.A.; Nascimento, C.D.V.D.; Mota, J.C.A.; Ferreira, O.P.; Sousa, H.H.D.F.; Silva, D.G.G.D.; Simões, L.R.; Souza Filho, A.G., et al. Biochar as a Carbonaceous Material to Enhance Soil Quality in Drylands Ecosystems: A Review. Environ Res. 2023, 233, 116489. https://doi.org/10.1016/j.envres.2023.116489
[50] Ibitoye, S.E.; Mahamood, R.M.; Jen, T.C., Loha, C.; Akinlabi, E.T. An Overview of Biomass Solid Fuels: Biomass Sources, Processing Methods, and Morphological and Microstructural Properties. Journal of Bioresources and Bioproducts 2023, 8, 333-360 https://doi.org/10.1016/j.jobab.2023.09.005
[51] Agyekum, E.B.; Nutakor, C. Recent Advancement in Biochar Production and Utilization – A Combination of Traditional and Bibliometric Review. Int. J. Hydrog. Energy 2024, 54, 1137-1153 https://doi.org/10.1016/j.ijhydene.2023.11.335
[52] Du, Y.; Feng, Y.; Xiao, Y. Interaction between Biochar of Different Particle Sizes and Clay Minerals in Changing Biochar Physicochemical Properties and Cadmium Sorption Capacity. J. Clean. Prod. 2023, 428, 139348. https://doi.org/10.1016/j.jclepro.2023.139348
[53] Huang, X.; Pan, G.; Li, L.; Zhang, X.; Wang, H.; Bolan, N.; Singh, B.P.; Ma, C.; Liang, F.; Chen, Y.; Li, H. Combined Resource Utilization of Ash from Biomass Power Generation and Wheat Straw Biochar for Soil Remediation. Appl. Soil Ecol. 2024, 193, 105150 https://doi.org/10.1016/j.apsoil.2023.105150
[54] Akhtar, S.S.; Andersen, M.N.; Liu, F. Residual Effects of Biochar on Improving Growth, Physiology and Yield of Wheat under Salt Stress. Agric Water Manag 2015, 158, 61–68. https://doi.org/10.1016/j.agwat.2015.04.010
[55] Chintala, R.; Mollinedo, J.; Schumacher, T. E.; Malo, D.D.; Julson, J.L. Effect of Biochar on Chemical Properties of Acidic Soil. Arch Agron Soil Sci. 2014, 60, 393–404. https://doi.org/10.1080/03650340.2013.789870
[56] Iboko, M.P.; Dossou-Yovo, E.R.; Obalum, S.E.; Oraegbunam, C.J.; Diedhiou, S.; Brümmer, C.; Témé, N. Paddy Rice Yield and Greenhouse Gas Emissions: Any Trade-off Due to co-Application of Biochar and Nitrogen Fertilizer? A Systematic Review. Heliyon 2023, 9, e22132. https://doi.org/10.1016/j.heliyon.2023.e22132
[57] Addai, P.; Mensah, A.K.; Sekyi-Annan, E.; Adjei, E.O. Biochar, Compost and/or NPK Fertilizer Affect the Uptake of Potentially Toxic Elements and Promote the Yield of Lettuce Grown in an Abandoned Gold Mine Tailing. Journal of Trace Elements and Minerals 2023, 4, 100066. https://doi.org/10.1016/j.jtemin.2023.100066
[58] Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar Additions Alter Phosphorus and Nitrogen Availability in Agricultural Ecosystems: A Meta-Analysis. Sci. Total Environ. 2019, 654, 463–472. https://doi.org/10.1016/j.scitotenv.2018.11.124
[59] Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X. Chu, H. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J Anal Appl Pyrolysis 2021, 155, 105081. https://doi.org/10.1016/j.jaap.2021.105081
[60] Roy, P.; Dias, G. Prospects for Pyrolysis Technologies in the Bioenergy Sector: A Review. Renew. Sust. Energ. Rev. 2017, 77, 59–69. https://doi.org/10.1016/j.rser.2017.03.136
[61] Gruss, I.; Twardowski, J.P.; Latawiec, A.; Medyńska-Juraszek, A.; Królczyk, J. Risk Assessment of low-Temperature Biochar Used as Soil Amendment on Soil Mesofauna. Environ. Sci. Pollut. Res. 2019, 26, 18230–18239. https://doi.org/10.1007/s11356-019-05153-7
[62] Hestrin, R.; Torres-Rojas, D.; Dynes, J.J.; Hook, J.M.; Regier, T.Z.; Gillespie, A.W.; Smernik, R.J.; Lehmann, J. Fire-Derived Organic Matter Retains Ammonia Through Covalent Bond Formation. Nat Commun. 2019, 10, 664. https://doi.org/10.1038/s41467-019-08401-z
[63] Keske, C.; Godfrey, T.; Hoag, D.L.K.; Abedin, J. Economic Feasibility of Biochar and Agriculture Coproduction from Canadian Black Spruce Forest. Food Energy Secur. 2020, 9, 1–11. https://doi.org/10.1002/fes3.188
[64] Laskosky, J.D.; Mante, A.A.; Zvomuya, F.; Amarakoon, I.; Leskiw, L. A Bioassay of Long-Term Stockpiled Salvaged Soil Amended with Biochar, Peat, and Humalite. Agrosyst. geosci. environ. 2020, 3, e20068. https://doi.org/10.1002/agg2.20068
[65] Chung, B.Y.H.; Ang, J.C.; Tang, J.Y.; Chong, J.W.; Tan, R.R.; Aviso, K.B.; Chemmangattuvalappil, N.G.; Thangalazhy-Gopakumar, S. Rough Set Approach to Predict Biochar Stability and pH from Pyrolysis Conditions and Feedstock Characteristics. Chem Eng Res Des 2023, 198, 221–233. https://doi.org/10.1016/j.cherd.2023.09.003
[66] Solaiman, Z.M.; Anawar, H.M. Application of Biochars for Soil Constraints: Challenges and Solutions. UWA 2015, 25, 631–638.
[67] Nguyen, C.T.; Tungtakanpoung, D.; Tra, V.T.; Kajitvichyanukul, P. Kinetic, Isotherm and Mechanism in Paraquat Removal by Adsorption Process Using Corn Cob Biochar Produced from Different Pyrolysis Conditions. Case Stud. Chem. Environ. Eng. 2022, 6, 100248. https://doi.org/10.1016/j.cscee.2022.100248
[68] Xu, H.; Han, Y.; Wang, G.; Deng, P.; Feng, L. Walnut Shell Biochar Based Sorptive Remediation of Estrogens Polluted Simulated Wastewater: Characterization, Adsorption Mechanism and Degradation by Persistent Free Radicals. Environ Technol Innov. 2022, 28, 102870. https://doi.org/10.1016/j.eti.2022.102870
[69] Torres-Lara, N.; Molina-Balmaceda, A.; Arismendi, D.; Richter, P. Peanut Shell-Derived Activated Biochar as a Convenient, Low-Cost, Ecofriendly and Efficient Sorbent in Rotating Disk Sorptive Extraction of Emerging Contaminants from Environmental Water Samples. Green Analytical Chemistry 2023, 6, 100073. https://doi.org/10.1016/j.greeac.2023.100073
[70] Pimentel, C.H.; Díaz-Fernández, L.; Gómez-Díaz, D.; Freire, M.S.; González-Álvarez, J. Separation of CO2 Using Biochar and KOH and ZnCl2 Activated Carbons Derived from Pine Sawdust. J Environ Chem Eng. 2023, 11, 111378. https://doi.org/10.1016/j.jece.2023.111378
[71] Elaigwu, S.E.; Greenway, G.M. Microwave-Assisted Hydrothermal Carbonization of Rapeseed Husk: A Strategy for Improving its Solid Fuel Properties. Fuel Process. Technol. 2016, 149, 305–312. https://doi.org/10.1016/j.fuproc.2016.04.030
[72] Konneh, M.; Wandera, S.M.; Murunga, S.I.; Raude, J.M. Adsorption and Desorption of Nutrients from Abattoir Wastewater: Modelling and Comparison of Rice, Coconut and Coffee Husk Biochar. Heliyon 2021, 7, e08458. https://doi.org/10.1016/j.heliyon.2021.e08458
[73] Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071
[74] Xu, X.; Kan, Y.; Zhao, L.; Cao, X. Chemical Transformation of CO2 During its Capture by Waste Biomass Derived Biochars. Environ. Pollut. 2016, 213, 533–540. https://doi.org/10.1016/j.envpol.2016.03.013
[75] Sethupathi, S.; Zhang, M.; Rajapaksha, A.U.; Lee, S.R.; Mohamad Nor, N.; Mohamed, A.R.; Al-Wabel, M.; Lee, S.S.; Ok, Y.S. Biochars as Potential Adsorbers of CH4, CO2 and H2S. Sustainability 2017, 9, 121. https://doi.org/10.3390/su9010121
[76] Ighalo, J.O.; Eletta, O.A.A.; Adeniyi, A.G. Biomass Carbonisation in Retort Kilns: Process Techniques, Product Quality and Future Perspectives. Bioresource Technology Reports 2022, 17, 100934. https://doi.org/10.1016/j.biteb.2021.100934
[77] Raček, J.; Chorazy, T.; Carnevale Miino, M.; Vršanská, M.; Brtnický, M.; Mravcová, L.; Kučerík, J.; Hlavínek, P. Biochar Production from the Pyrolysis of Food Waste: Characterization and Implications for its Use. Sustain Chem Pharm. 2023, 37, 101387. https://doi.org/10.1016/j.scp.2023.101387
[78] Godvin Sharmila, V.; Kumar Tyagi, V.; Varjani, S.; Rajesh Banu, S. A Review on the lignocellulosic Derived Biochar-Based Catalyst in Wastewater Remediation: Advanced Treatment Technologies and Machine Learning Tools. Bioresour. Technol. 2023, 387, 129587. https://doi.org/10.1016/j.biortech.2023.129587
[79] Cui, X.; Wang, J.; Wang, X.; Du, G.; Khan, K.Y.; Yan, B.; Cheng, Z.; Chen, G. Pyrolysis of Exhausted Hydrochar Sorbent for Cadmium Separation and Biochar Regeneration. Chemosphere 2022, 306, 135546. https://doi.org/10.1016/j.chemosphere.2022.135546
[80] Ambaye, T.G.; Formicola, F.; Sbaffoni, S.; Milanese, C.; Franzetti, A.; Vaccari M. Effect of Biochar on Petroleum Hydrocarbon Degradation and Energy Production in Microbial Electrochemical Treatment. J Environ Chem Eng. 2023, 11, 5. https://doi.org/10.1016/j.jece.2023.110817
[81] Qi, Y.; Zhong, Y.; Luo, L.; He, J.; Feng, B.; Wei, Q.; Zhang, K.; Ren, H. Subsurface Constructed Wetlands with Modified Biochar Added for Advanced Treatment of Tailwater: Performance and Microbial Communities. Sci. Total Environ. 2023, 906, 167533. https://doi.org/10.1016/j.scitotenv.2023.167533
[82] Qin, X.; Cheng, S.; Xing, B.; Qu, X.; Shi, C.; Meng, W.; Zhang, C.; Xia, H. Preparation of Pyrolysis Products by Catalytic Pyrolysis of Poplar: Application of Biochar in Antibiotic Wastewater Treatment. Chemosphere 2023, 338, 139519. https://doi.org/10.1016/j.chemosphere.2023.139519
[83] Su, K.; Hu, G.; Zhao, T.; Dong, H.; Yang, Y.; Pan, H.; Lin, Q. The Ultramicropore Biochar Derived from Waste Distiller’s Grains for Wet-Process Phosphoric Acid Purification: Removal Performance and Mechanisms of Cr(VI). Chemosphere 2023, 349, 140877. https://doi.org/10.1016/j.chemosphere.2023.140877
[84] Piloni, R.V.; Coelho, L.F.; Sass, D.C.; Lanteri, M.; Zaghete Bertochi, M.A.; Laura Moyano, E.; Contiero, J. Biochars from Spirulina as an Alternative Material in the Purification of Lactic Acid from a Fermentation Broth. Curr. Opin. Green Sustain. Chem. 2021, 4, 100084. https://doi.org/10.1016/j.crgsc.2021.100084
[85] Wang, Y.; Luo, J.; Qin, J.; Huang, Y.; Ke, T.; Luo, Y.; Yang, M. Efficient Removal of Phytochrome Using Rice Straw-Derived Biochar: Adsorption Performance, Mechanisms, and Practical Applications. Bioresour. Technol. 2023, 376, 128918. https://doi.org/10.1016/j.biortech.2023.128918
[86] Bian, H.; Wang, M.; Huang, J.; Liang, R.; Du, J.; Fang, C.; Shen, C.; Man, Y.B.; Wong, M.H.; Shan, S., et al. Large Particle Size Boosting the Engineering Application Potential of Functional Biochar in Ammonia Nitrogen and Phosphorus Removal from Biogas Slurry. J. Water Process. Eng. 2023, 57, 104640. https://doi.org/10.1016/j.jwpe.2023.104640
[87] Bibi, A.; Khan, H.; Hussain, S.; Arshad, M.; Wahab, F.; Usama, M.; Khan, K.; Akbal, F. Sustainable Wastewater Purification with Crab Shell-Derived Biochar: Advanced Machine Learning Modeling & Experimental Analysis. Bioresour. Technol. 2023, 390, 129900. https://doi.org/10.1016/j.biortech.2023.129900
[88] Choi, J.; Kim, M.; Choi, J.; Jang, M.; Hyun, S. Sorption Behavior of Three Aromatic Acids (Benzoic Acid, 1-Naphthoic Acid and 9-Anthroic Acid) on Biochar: Cosolvent Effect in Different Liquid Phases. Chemosphere 2023, 349, 140898. https://doi.org/10.1016/j.chemosphere.2023.140898
[89] Liu, Z.; Xie, S.; Zhou, H.; Zhao, L.; Yao, Z.; Fan, H.; Si, B.; Yang, G. Organic Contaminants Removal and Carbon Sequestration Using Pig Manure Solid Residue-Derived Biochar: A Novel Closed-Loop Strategy for Anaerobic Liquid Digestate. Chem. Eng. J. 2023, 471, 144601. https://doi.org/10.1016/j.cej.2023.144601
[90] Gul, T.; Aslam, M.M.; Khan, A.S.; Iqbal, T.; Ullah, F.; Eldesoky, G.E.; Aljuwayid, A.M.; Akhtar, M.S. Phytotoxic Responses of Wheat to an Imidazolium Based Ionic Liquid in Absence and Presence of Biochar. Chemosphere 2023, 322, 138080. https://doi.org/10.1016/j.chemosphere.2023.138080
[91] Lourenço, M.A.O.; Frade, T.; Bordonhos, M.; Castellino, M.; Pinto, M. L.; Bocchini, S. N-doped Sponge-Like Biochar: A Promising CO2 Sorbent for CO₂/CH₄ and CO2/N₂ Gas Separation. Chem. Eng. J. 2023, 470, 144005. https://doi.org/10.1016/j.cej.2023.144005
[92] Lee, J.; Lee, S.; Lin, K.Y.A.; Jung, S.; Kwon, E. E. Abatement of Odor Emissions from Wastewater Treatment Plants Using Biochar. Environ. Pollut. 2023, 336, 122426. https://doi.org/10.1016/j.envpol.2023.122426
[93] Guo, T.; Zhang, Y.; Geng, Y.; Chen, J.; Zhu, Z.; Bedane, A.H.; Du, Y. Surface Oxidation Modification of Nitrogen Doping Biochar for Enhancing CO2 Adsorption. Ind Crops Prod. 2023, 206, 117582. https://doi.org/10.1016/j.indcrop.2023.117582
[94] Feng, Q.; Zhang, J.; Peng, C.; Cai, Z. Synthesis of Modified Sludge Biochar for Flue Gas Denitration: Biochar Properties, Synergistic Efficiency and Mechanism. Waste Manage. 2023, 170, 204–214. https://doi.org/10.1016/j.wasman.2023.08.007
[95] Wang, Y.; Dou, Z.; Tang, X.; Lian, L.; Liu, Y. Oxidative Absorption of Elemental Mercury in Combustion Flue Gas Using Biochar-Activated Peroxydisulfate System. J. Energy Inst. 2023, 108, 101248. https://doi.org/10.1016/j.joei.2023.101248
[96] Cho, S.H.; Lee, S.; Kim, Y.; Song, H.; Lee, J.; Tsang, Y.F.; Chen, W.-H.; Park, Y.-K.; Lee, D.-J.; Jung, S., et al. Applications of Agricultural Residue Biochars to Removal of Toxic Gases Emitted from Chemical Plants: A Review. Sci. Total Environ. 2023, 868, 161655. https://doi.org/10.1016/j.scitotenv.2023.161655
[97] Selenius, M.; Ruokolainen, J.; Riikonen, J.; Rantanen, J.; Näkki, S Lehto, V.-P.; Hyttinen, M. Removing Siloxanes and Hydrogen Sulfide from Landfill Gases with Biochar and Activated Carbon Filters. Waste Manage. 2023, 167, 31–38. https://doi.org/10.1016/j.wasman.2023.05.006
[98] Cao, W.; Xu, H.; Zhang, X.; Xiang, W.; Qi, G.; Wan, L.; Gao, B. Novel Post-Treatment of Ultrasound Assisting with Acid Washing Enhance Lignin-Based Biochar for CO2 Capture: Adsorption Performance and Mechanism. Chem. Eng. J. 2023, 47, 1445231. https://doi.org/10.1016/j.cej.2023.144523