Modern Use of Biochar in Various Technologies and Industries. A Review
Attachment | Size |
---|---|
full_text.pdf | 406.88 KB |
Keywords:
[1] Łaska, G.; Ige, A.R. A Review: Assessment of Domestic Solid Fuel Sources in Nigeria. Energies 2023, 16, 4722. https://doi.org/10.3390/en16124722
https://doi.org/10.3390/en16124722
[2] Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Bautista Contreras, A.; Hassan, N.; Abd ElRasoul, A. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2021, 15, 61-73. https://doi.org/10.23939/chcht15.01.061
https://doi.org/10.23939/chcht15.01.061
[3] Malik, I.K.; Miroshnichenko, D.V.; Contreras, A.B.; Hassan, N.; El Rasoul, A.A. Prediction of the Higher Heating Value of Charcoal. Pet. Coal 2022, 64, 100-105.
[4] Long, J.M.; Boyette, M.D. Analysis of Micronized Charcoal for Use in a Liquid Fuel Slurry. Energies 2017, 10, 25. https://doi.org/10.3390/en10010025
https://doi.org/10.3390/en10010025
[5] Straka, T.J. Charcoal as a Fuel in the Ironmaking and Smelting Industries. Advances in Historical Studies 2017, 6, 56-64. https://doi.org/10.4236/ahs.2017.61004
https://doi.org/10.4236/ahs.2017.61004
[6] Miroshnichenko, D.; Shmeltser, K.; Kormer, M. Factors Affecting the Formation the Carbon Structure of coke and the Method of Stabilizing its Physical and Mechanical Properties. C-Journal of Carbon Research 2023, 9, 66. https://doi.org/10.3390/c9030066
https://doi.org/10.3390/c9030066
[7] Bannikov, L.; Miroshnichenko, D.; Pylypenko, O.; Pyshyev, S.; Fedevych, O.; Meshchanin, V. Coke Quenching Plenum Equipment Corrosion and its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production. Chem. Chem. Technol. 2022, 16, 328-336. https://doi.org/10.23939/chcht16.02.328
https://doi.org/10.23939/chcht16.02.328
[8] Drozdnik, I.D.; Miroshnichenko, D.V.; Shmeltser, E.O.; Kormer, M.V.; Pyshyev, S.V. Investigation of Possible Losses of Coal Raw Materials During its Technological Preparation for Coking Message. 1. The Actual Mass Variation of Coal in the Process of its Storage and Crushing. Pet. Coal 2019, 61, 631-637.
[9] Lyalyuk, V.P., Shmeltser, E.O., Kassim, D.A. Improving the technology production of coke for blast furnace smelting; Octan Print: Praga, 2022.
https://doi.org/10.46489/ITTPOC-229
[10] Ng, K.W.; MacPhee, J.A.; Giroux, L.; Todoschuk, T. Reactivity of Bio-Coke with CO2. Fuel Process. Technol. 2011, 92, 801-804. https://doi.org/10.1016/j.fuproc.2010.08.005
https://doi.org/10.1016/j.fuproc.2010.08.005
[11] Jahanshani, S.; Mathieson, J.G.; Somerville, M.A.; Haque, N.; Norgate, T.E.; Deev, A.; Pan, Y.; Xie, D.; Ridgeway, P.; Zulli, P. Development of Low-Emission Integrated Steelmaking Process. J. Sustain. Metall. 2015, 1, 94-114. https://doi.org/10.1007/s40831-015-0008-6
https://doi.org/10.1007/s40831-015-0008-6
[12] Suopajärvi, H.; Pongrácz, E.; Fabritius, T. The potential of Using Biomass-Based Reducing Agents in the Blast Furnace: A Review of Thermochemical Conversion Technologies and Assessments Related to Sustainability. Renew. Sust. Energ. Rev. 2013, 25, 511-528. https://doi.org/10.1016/j.rser.2013.05.005
https://doi.org/10.1016/j.rser.2013.05.005
[13] Suopajärvi, H.; Dahl, Е.; Kemppainen, А.; Gornostayev, S.; Koskela, А.; Fabritius, Т. Effect of Charcoal and Kraft-Lignin Addition on Coke Compression Strength and Reactivity. Energies 2017, 10, 1850. https://doi.org/10.3390/en10111850
https://doi.org/10.3390/en10111850
[14] Suopajärvi, H.; Kemppainen, A.; Haapakangas, J.; Fabritius, T. Extensive Review of the Opportunities to Use Biomass-Based Fuels in Iron and Steelmaking Processes. J. Clean. Prod. 2017, 148, 709-734. https://doi.org/10.1016/j.jclepro.2017.02.029
https://doi.org/10.1016/j.jclepro.2017.02.029
[15] Sundqvist Ökvist, L.; Lundgren, M. Experiences of Bio-Coal Applications in the Blast Furnace Process-Opportunities and Limitations. Minerals 2021, 11, 863. https://doi.org/10.3390/min11080863
https://doi.org/10.3390/min11080863
[16] Brooks, В.; Khoshk Rish, S.; Lomas, Н.; Jayasekara, А.; Tahmasebi, А. Advances in Low Carbon Cokemaking - Influence of Alternative Raw Materials and Coal Properties on Coke Quality. J Anal Appl Pyrolysis 2023, 173, 106083. https://doi.org/10.1016/j.jaap.2023.106083
https://doi.org/10.1016/j.jaap.2023.106083
[17] Suopajäarvi, H.; Umeki, K.; Mousa, E.; Hedayati, A.; Romard, H.; Kemppainen, A.; Wang, C.; Phounglamcheik, A.; Tuomikoski, S.; Norberg, N., et al. Use of Biomass in Integrated Steelmaking-Status Quo, Future Needs and Comparison to other Low-CO2 Steel Production Technologies. Appl. Energy 2018, 213, 384-407. https://doi.org/10.1016/j.apenergy.2018.01.060
https://doi.org/10.1016/j.apenergy.2018.01.060
[18] Mousa, E.; Wang, C.; Riesbeck, J.; Larsson, M. Biomass Applications in Iron and Steel Industry: An Overview of Challenges and Opportunities. Renew. Sust. Energ. Rev. 2016, 65, 1247-1266. https://doi.org/10.1016/j.rser.2016.07.061
https://doi.org/10.1016/j.rser.2016.07.061
[19] Mousa, E.A.; Ahmed, H.M.; Wang, C. Novel Approach towards Biomass Lignin Utilization in Ironmaking Blast Furnace. ISIJ Int. 2017, 57, 1788-96. https://doi.org/10.2355/isijinternational.ISIJINT-2017-127
https://doi.org/10.2355/isijinternational.ISIJINT-2017-127
[20] Mathieson, J.G.; Somerville, M.; Deev, A.; Jahanshahi, S. Utilization of biomass as an alternative fuel in ironmaking. In Iron Ore: Mineralogy, Processing and Environmental Sustainability, 1st ed.; Lu, L., Ed.; Woodhead Publ. Elsevier Ltd.: Cambridge, UK, Waltham, MA, USA, 2015; pp 581-609. https://doi.org/10.1016/B978-1-78242-156-6.00019-8
https://doi.org/10.1016/B978-1-78242-156-6.00019-8
[21] Ooi, T.C.; Aries, E.; Ewan, B.C.; Thompson, D.; Anderson, D.R.; Fisher, R.; Fray, T.; Tognarelli, D. The Study of Sunflower Seed Husks as a Fuel in the Iron Ore Clinkering Process. Miner Eng 2008, 21, 167-77. https://doi.org/10.1016/j.mineng.2007.09.005
https://doi.org/10.1016/j.mineng.2007.09.005
[22] Gan, M.; Fan, X.; Ji, Z.; Jiang, T.; Chen, X.; Yu, Z.; Li, G.; Yin, L. Application of Biomass Fuel in Iron Ore Clinkering: Influencing Mechanism and Emission Reduction. Ironmak. Steelmak. 2015, 42, 27-33. https://doi.org/10.1179/1743281214Y.0000000194
https://doi.org/10.1179/1743281214Y.0000000194
[23] Cheng, Z.; Yang, J.; Zhou, L.; Liu, Y.; Wang, Q. Characteristics of Charcoal Combustion and its Effects on Iron-Ore Clinkering Performance. Appl Energy 2016, 161, 364-374. https://doi.org/10.1016/j.apenergy.2015.09.095
https://doi.org/10.1016/j.apenergy.2015.09.095
[24] Amanat, N.; Tsafnat, N.; Loo, B.C.E.; Jones, A.S. Metallurgical Coke: An Investigation into Compression Properties and Microstructure Using X-ray Microtomography. Scr. Mater. 2009, 60, 92-95. https://doi.org/10.1016/j.scriptamat.2008.09.003
https://doi.org/10.1016/j.scriptamat.2008.09.003
[25] Kim, S.Y.; Sasaki, Y. Simulation of Effect of Pore Structure on Coke Strength Using 3-dimensional Discrete Element Method. ISIJ Int. 2010, 50, 813-821. http://dx.doi.org/10.2355/isijinternational.50.813
https://doi.org/10.2355/isijinternational.50.813
[26] Haapakangas, J.; Uusitalo, J.; Mattila, O.; Kokkonen, T.; Porter, D.; Fabritius, T. A Method for Evaluating Coke Hot Strength. Steel Res. Int. 2013, 84, 65-71. https://doi.org/10.1002/srin.201200078
https://doi.org/10.1002/srin.201200078
[27] Haapakangas, J.A.; Uusitalo, J.A.; Mattila, O.J.; Gornostayev, S.S.; Porter, D.A.; Fabritius, T. The Hot Strength of Industrial Cokes-Evaluation of Coke Properties that Affect Its High-Temperature Strength. Steel Res. Int. 2014, 85, 1608-1619. https://doi.org/10.1016/j.jfueco.2022.100082
https://doi.org/10.1016/j.jfueco.2022.100082
[28] Bittencourt Marques, M.; Rodrigues Assis, A.; Benício Dias, S.M.; Harley Araújo, F.; Junqueira dos Santos, R. Co-injeção de gás natural moinha de carvão vegetal e carvão mineral no alto-forno "A" da Arcelormittal Monlevade. In Proceedings of the 41 Seminário de Redução de Minério de Ferro e Matérias-Primas Conference, Vila Vehla, Brazil, 12-16 September 2011. https://doi.org/10.5151/2594-357X-24003
[29] Mahottamananda, S.N.; Pal, Y.; Dinesh, M.; Ingenito, A. Beeswax - EVA/Activated-Charcoal-Based Fuels for Hybrid Rockets: Thermal and Ballistic Evaluation. Energies 2022, 15, 7578. https://doi.org/10.3390/en15207578
https://doi.org/10.3390/en15207578
[30] Sanjay, M.R.; Arpitha, G.R.; Naik, L.L.; Gopalakrisha, K.; Yogesha, B. Applications of Natural Fibers and Its Composites: An Overview. Natural Resources 2016, 7, 108-114. http://dx.doi.org/10.4236/nr.2016.73011
https://doi.org/10.4236/nr.2016.73011
[31] Delatorre, F.M.; Cupertino, G.F.M.; Oliveira, M.P.; da Silva Gomes, F.; Profeti, L.P.R.; Profeti, D.; Júnior, M.G.; de Azevedo, M.G.; Saloni, D.; Júnior, A.F.D. A Novel Approach to Charcoal Fine Waste: Sustainable Use as Filling of Polymeric Matrices. Polymers 2022, 14, 5525. https://doi.org/10.3390/polym14245525
https://doi.org/10.3390/polym14245525
[32] Delatorre, F.M.; Cupertino, G.F.M.; Pereira, A.K.S.; de Souza, E.C.; da Silva, Á.M.; Ucella Filho, J.G.M.; Saloni, D.; Profeti, L.P.R.; Profeti, D.; Dias Júnior, A.F. Photoluminous Response of Biocomposites Produced with Charcoal. Polymers 2023, 15, 3788. https://doi.org/10.3390/polym15183788
https://doi.org/10.3390/polym15183788
[33] Delatorre, F.M.; Pereira, A.K.S.; da Silva, Á.M.; de Souza, E.C.; Oliveira, M.P.; Profeti, D.; Profeti, L.P.R.; Dias Júnior, A.F. The Addition of Charcoal Fines Can Increase the Photodegradation Resistance of Polymeric Biocomposites. Environ. Sci. Proc. 2022, 13, 8. https://doi.org/10.3390/IECF2021-10812
https://doi.org/10.3390/IECF2021-10812
[34] Das, S.C.; Ashek-E-Khoda, S.; Sayeed, M.A.; Paul, D.; Dhar, S.A.; Grammatikos, S.A. On the Use of Wood Charcoal Filler to Improve the Properties of Natural Fiber Reinforced Polymer Composites. Mater. Today Proc. 2021, 44, 926-929. https://doi.org/10.1016/j.matpr.2020.10.808
https://doi.org/10.1016/j.matpr.2020.10.808
[35] Islam, M.T.; Das, S.C.; Saha, J.; Paul, D.; Islam, M.T.; Rahman, M.; Khan, M.A. Effect of Coconut Shell Powder as Filler on the Mechanical Properties of Coir-polyester Composites. Chem. Mater. Eng. 2017, 5, 75-82. https://doi.org/10.13189/cme.2017.050401
https://doi.org/10.13189/cme.2017.050401
[36] Dahal, R.K.; Acharya, B.; Saha, G.; Bissessur, R.; Dutta, A.; Farooque, A. Biochar as a Filler in Glassfiber Reinforced Composites: Experimental Study of Thermal and Mechanical Properties. Compos. Part B Eng. 2019, 175, 107169. https://doi.org/10.1016/j.compositesb.2019.107169
https://doi.org/10.1016/j.compositesb.2019.107169
[37] Zainal Abidin, Z.; Mamauod, S.N.L.; Romli, A.Z.; Sarkawi, S.S.; Zainal, N.H. Synergistic Effect of Partial Replacement of Carbon Black by Palm Kernel Shell Biochar in Carboxylated Nitrile Butadiene Rubber Composites. Polymers 2023, 15, 943. https://doi.org/10.3390/polym15040943
https://doi.org/10.3390/polym15040943
[38] Miyake, A.; Kobayashi, H.; Echigoya, H.; Kubota, S.; Wada, Y.; Ogata, Y.; Arai, H.; Ogawa, T. Detonation Characteristics of Ammonium Nitrate and Activated Carbon Mixtures. J Loss Prev Process Ind 2007, 20, 584-588. https://doi.org/10.1016/j.jlp.2007.04.026
https://doi.org/10.1016/j.jlp.2007.04.026
[39] Nakamura, H.; Saeki, K.; Akiyoshi, M.; Takahasi, K. The Reaction of Ammonium Nitrate with Carbon Powder. J. Jpn. Explos. Soc. 2002, 63, 87-93.
[40] Miyake, A.; Echigoya, H.; Kobayashi, H.; Katoh, K.; Kubota, S.; Wada, Y.; Ogata, Y.; Ogawa, T. Detonation Velocity and Pressure of Ammonium Nitrate and Activated Carbon Mixtures. Mater. Sci. Forum 2008, 566, 107-112. https://doi.org/10.4028/www.scientific.net/MSF.566.107
https://doi.org/10.4028/www.scientific.net/MSF.566.107
[41] Miyake, A.; Echigoya, H.; Kobayashi, H.; Ogawa, T.; Katoh, K.; Kubota, S.; Wada, Y.; Ogata, Y. Non-Ideal Detonation Properties of Ammonium Nitrate and Activated Carbon Mixtures. Int. J. Mod. Phys. B 2008, 22, 1319-1324. https://doi.org/10.1142/S0217979208046712
https://doi.org/10.1142/S0217979208046712
[42] Kubota, S.; Saburi, T.; Ogata, Y.; Miyake, A. Non-Ideal Behaviour of Ammonium Nitrate Based High-Energetic Materials in Small Diameter Steel Tube. Sci. Technol. Energy Mater. 2013, 74, 61-65. https://doi.org/10.1142/S0217979208046712
https://doi.org/10.1142/S0217979208046712
[43] Biessikirski, A.; Gotovac Atlagi'c, S.; Pytlik, M.; Kuterasi'nski, Ł.; Dworzak, M.; Twardosz, M.; Nowak-Senderowska, D.; Napruszewska, B.D. The Influence of Microstructured Charcoal Additive on ANFO's Properties. Energies 2021, 14, 4354. https://doi.org/10.3390/en14144354
https://doi.org/10.3390/en14144354
[44] Heitkötter, J.; Marschner, B. Interactive Effects of Biochar Ageing in Soils Related to Feedstock, Pyrolysis Temperature, and Historic Charcoal Production. Geoderma 2015, 245-246, 56-64. https://doi.org/10.1016/j.geoderma.2015.01.012
https://doi.org/10.1016/j.geoderma.2015.01.012
[45] Muzyka, R.; Misztal, E.; Hrabak, J.; Banks, S.W.; Sajdak, M. Various Biomass Pyrolysis Conditions Influence the Porosity and Pore Size Distribution of Biochar. Energy 2023, 263, 126128. https://doi.org/10.1016/j.energy.2022.126128
https://doi.org/10.1016/j.energy.2022.126128
[46] Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The Role of Biochar and Biochar-Compost in Improving Soil Quality and Crop Performance: A Review. Appl. Soil Ecol. 2017, 119, 156-170. https://doi.org/10.1016/j.apsoil.2017.06.008
https://doi.org/10.1016/j.apsoil.2017.06.008
[47] Idbella, M.; Baronti, S.; Giagnoni, L.; Renella, G.; Becagli, M.; Cardelli, R.; Maienza, A.; Vaccari, F.P.; Bonanomi, G. Long-Term Effects of Biochar on Soil Chemistry, Biochemistry, and Microbiota: Results from a 10-year Field Vineyard Experiment. Appl. Soil Ecol. 2023, 195, 105217. https://doi.org/10.1016/j.apsoil.2023.105217
https://doi.org/10.1016/j.apsoil.2023.105217
[48] Hasnain, M.; Munir, N.; Abideen, Z.; Zulfiqar, F.; Koyro, H.W.; Ali El-Naggar, A.; Caçador, I.; Duarte, B.; Rinklebe, J.; Yong, J.W.H. Biochar-Plant Interaction and Detoxification Strategies under Abiotic Stresses for Achieving Agricultural Resilience: A Critical Review. Ecotoxicol. Environ. Saf. 2023, 249, 114408. https://doi.org/10.1016/j.ecoenv.2022.114408
https://doi.org/10.1016/j.ecoenv.2022.114408
[49] Nascimento, Í.V.D.; Fregolente, L.G.; Pereira, A.P.D.A.; Nascimento, C.D.V.D.; Mota, J.C.A.; Ferreira, O.P.; Sousa, H.H.D.F.; Silva, D.G.G.D.; Simões, L.R.; Souza Filho, A.G., et al. Biochar as a Carbonaceous Material to Enhance Soil Quality in Drylands Ecosystems: A Review. Environ Res. 2023, 233, 116489. https://doi.org/10.1016/j.envres.2023.116489
https://doi.org/10.1016/j.envres.2023.116489
[50] Ibitoye, S.E.; Mahamood, R.M.; Jen, T.C., Loha, C.; Akinlabi, E.T. An Overview of Biomass Solid Fuels: Biomass Sources, Processing Methods, and Morphological and Microstructural Properties. Journal of Bioresources and Bioproducts 2023, 8, 333-360 https://doi.org/10.1016/j.jobab.2023.09.005
https://doi.org/10.1016/j.jobab.2023.09.005
[51] Agyekum, E.B.; Nutakor, C. Recent Advancement in Biochar Production and Utilization - A Combination of Traditional and Bibliometric Review. Int. J. Hydrog. Energy 2024, 54, 1137-1153 https://doi.org/10.1016/j.ijhydene.2023.11.335
https://doi.org/10.1016/j.ijhydene.2023.11.335
[52] Du, Y.; Feng, Y.; Xiao, Y. Interaction between Biochar of Different Particle Sizes and Clay Minerals in Changing Biochar Physicochemical Properties and Cadmium Sorption Capacity. J. Clean. Prod. 2023, 428, 139348. https://doi.org/10.1016/j.jclepro.2023.139348
https://doi.org/10.1016/j.jclepro.2023.139348
[53] Huang, X.; Pan, G.; Li, L.; Zhang, X.; Wang, H.; Bolan, N.; Singh, B.P.; Ma, C.; Liang, F.; Chen, Y.; Li, H. Combined Resource Utilization of Ash from Biomass Power Generation and Wheat Straw Biochar for Soil Remediation. Appl. Soil Ecol. 2024, 193, 105150 https://doi.org/10.1016/j.apsoil.2023.105150
https://doi.org/10.1016/j.apsoil.2023.105150
[54] Akhtar, S.S.; Andersen, M.N.; Liu, F. Residual Effects of Biochar on Improving Growth, Physiology and Yield of Wheat under Salt Stress. Agric Water Manag 2015, 158, 61-68. https://doi.org/10.1016/j.agwat.2015.04.010
https://doi.org/10.1016/j.agwat.2015.04.010
[55] Chintala, R.; Mollinedo, J.; Schumacher, T. E.; Malo, D.D.; Julson, J.L. Effect of Biochar on Chemical Properties of Acidic Soil. Arch Agron Soil Sci. 2014, 60, 393-404. https://doi.org/10.1080/03650340.2013.789870
https://doi.org/10.1080/03650340.2013.789870
[56] Iboko, M.P.; Dossou-Yovo, E.R.; Obalum, S.E.; Oraegbunam, C.J.; Diedhiou, S.; Brümmer, C.; Témé, N. Paddy Rice Yield and Greenhouse Gas Emissions: Any Trade-off Due to co-Application of Biochar and Nitrogen Fertilizer? A Systematic Review. Heliyon 2023, 9, e22132. https://doi.org/10.1016/j.heliyon.2023.e22132
https://doi.org/10.1016/j.heliyon.2023.e22132
[57] Addai, P.; Mensah, A.K.; Sekyi-Annan, E.; Adjei, E.O. Biochar, Compost and/or NPK Fertilizer Affect the Uptake of Potentially Toxic Elements and Promote the Yield of Lettuce Grown in an Abandoned Gold Mine Tailing. Journal of Trace Elements and Minerals 2023, 4, 100066. https://doi.org/10.1016/j.jtemin.2023.100066
https://doi.org/10.1016/j.jtemin.2023.100066
[58] Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar Additions Alter Phosphorus and Nitrogen Availability in Agricultural Ecosystems: A Meta-Analysis. Sci. Total Environ. 2019, 654, 463-472. https://doi.org/10.1016/j.scitotenv.2018.11.124
https://doi.org/10.1016/j.scitotenv.2018.11.124
[59] Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X. Chu, H. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J Anal Appl Pyrolysis 2021, 155, 105081. https://doi.org/10.1016/j.jaap.2021.105081
https://doi.org/10.1016/j.jaap.2021.105081
[60] Roy, P.; Dias, G. Prospects for Pyrolysis Technologies in the Bioenergy Sector: A Review. Renew. Sust. Energ. Rev. 2017, 77, 59-69. https://doi.org/10.1016/j.rser.2017.03.136
https://doi.org/10.1016/j.rser.2017.03.136
[61] Gruss, I.; Twardowski, J.P.; Latawiec, A.; Medyńska-Juraszek, A.; Królczyk, J. Risk Assessment of low-Temperature Biochar Used as Soil Amendment on Soil Mesofauna. Environ. Sci. Pollut. Res. 2019, 26, 18230-18239. https://doi.org/10.1007/s11356-019-05153-7
https://doi.org/10.1007/s11356-019-05153-7
[62] Hestrin, R.; Torres-Rojas, D.; Dynes, J.J.; Hook, J.M.; Regier, T.Z.; Gillespie, A.W.; Smernik, R.J.; Lehmann, J. Fire-Derived Organic Matter Retains Ammonia Through Covalent Bond Formation. Nat Commun. 2019, 10, 664. https://doi.org/10.1038/s41467-019-08401-z
https://doi.org/10.1038/s41467-019-08401-z
[63] Keske, C.; Godfrey, T.; Hoag, D.L.K.; Abedin, J. Economic Feasibility of Biochar and Agriculture Coproduction from Canadian Black Spruce Forest. Food Energy Secur. 2020, 9, 1-11. https://doi.org/10.1002/fes3.188
https://doi.org/10.1002/fes3.188
[64] Laskosky, J.D.; Mante, A.A.; Zvomuya, F.; Amarakoon, I.; Leskiw, L. A Bioassay of Long-Term Stockpiled Salvaged Soil Amended with Biochar, Peat, and Humalite. Agrosyst. geosci. environ. 2020, 3, e20068. https://doi.org/10.1002/agg2.20068
https://doi.org/10.1002/agg2.20068
[65] Chung, B.Y.H.; Ang, J.C.; Tang, J.Y.; Chong, J.W.; Tan, R.R.; Aviso, K.B.; Chemmangattuvalappil, N.G.; Thangalazhy-Gopakumar, S. Rough Set Approach to Predict Biochar Stability and pH from Pyrolysis Conditions and Feedstock Characteristics. Chem Eng Res Des 2023, 198, 221-233. https://doi.org/10.1016/j.cherd.2023.09.003
https://doi.org/10.1016/j.cherd.2023.09.003
[66] Solaiman, Z.M.; Anawar, H.M. Application of Biochars for Soil Constraints: Challenges and Solutions. UWA 2015, 25, 631-638.
https://doi.org/10.1016/S1002-0160(15)30044-8
[67] Nguyen, C.T.; Tungtakanpoung, D.; Tra, V.T.; Kajitvichyanukul, P. Kinetic, Isotherm and Mechanism in Paraquat Removal by Adsorption Process Using Corn Cob Biochar Produced from Different Pyrolysis Conditions. Case Stud. Chem. Environ. Eng. 2022, 6, 100248. https://doi.org/10.1016/j.cscee.2022.100248
https://doi.org/10.1016/j.cscee.2022.100248
[68] Xu, H.; Han, Y.; Wang, G.; Deng, P.; Feng, L. Walnut Shell Biochar Based Sorptive Remediation of Estrogens Polluted Simulated Wastewater: Characterization, Adsorption Mechanism and Degradation by Persistent Free Radicals. Environ Technol Innov. 2022, 28, 102870. https://doi.org/10.1016/j.eti.2022.102870
https://doi.org/10.1016/j.eti.2022.102870
[69] Torres-Lara, N.; Molina-Balmaceda, A.; Arismendi, D.; Richter, P. Peanut Shell-Derived Activated Biochar as a Convenient, Low-Cost, Ecofriendly and Efficient Sorbent in Rotating Disk Sorptive Extraction of Emerging Contaminants from Environmental Water Samples. Green Analytical Chemistry 2023, 6, 100073. https://doi.org/10.1016/j.greeac.2023.100073
https://doi.org/10.1016/j.greeac.2023.100073
[70] Pimentel, C.H.; Díaz-Fernández, L.; Gómez-Díaz, D.; Freire, M.S.; González-Álvarez, J. Separation of CO2 Using Biochar and KOH and ZnCl2 Activated Carbons Derived from Pine Sawdust. J Environ Chem Eng. 2023, 11, 111378. https://doi.org/10.1016/j.jece.2023.111378
https://doi.org/10.1016/j.jece.2023.111378
[71] Elaigwu, S.E.; Greenway, G.M. Microwave-Assisted Hydrothermal Carbonization of Rapeseed Husk: A Strategy for Improving its Solid Fuel Properties. Fuel Process. Technol. 2016, 149, 305-312. https://doi.org/10.1016/j.fuproc.2016.04.030
https://doi.org/10.1016/j.fuproc.2016.04.030
[72] Konneh, M.; Wandera, S.M.; Murunga, S.I.; Raude, J.M. Adsorption and Desorption of Nutrients from Abattoir Wastewater: Modelling and Comparison of Rice, Coconut and Coffee Husk Biochar. Heliyon 2021, 7, e08458. https://doi.org/10.1016/j.heliyon.2021.e08458
https://doi.org/10.1016/j.heliyon.2021.e08458
[73] Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071
https://doi.org/10.1016/j.chemosphere.2013.10.071
[74] Xu, X.; Kan, Y.; Zhao, L.; Cao, X. Chemical Transformation of CO2 During its Capture by Waste Biomass Derived Biochars. Environ. Pollut. 2016, 213, 533-540. https://doi.org/10.1016/j.envpol.2016.03.013
https://doi.org/10.1016/j.envpol.2016.03.013
[75] Sethupathi, S.; Zhang, M.; Rajapaksha, A.U.; Lee, S.R.; Mohamad Nor, N.; Mohamed, A.R.; Al-Wabel, M.; Lee, S.S.; Ok, Y.S. Biochars as Potential Adsorbers of CH4, CO2 and H2S. Sustainability 2017, 9, 121. https://doi.org/10.3390/su9010121
https://doi.org/10.3390/su9010121
[76] Ighalo, J.O.; Eletta, O.A.A.; Adeniyi, A.G. Biomass Carbonisation in Retort Kilns: Process Techniques, Product Quality and Future Perspectives. Bioresource Technology Reports 2022, 17, 100934. https://doi.org/10.1016/j.biteb.2021.100934
https://doi.org/10.1016/j.biteb.2021.100934
[77] Raček, J.; Chorazy, T.; Carnevale Miino, M.; Vršanská, M.; Brtnický, M.; Mravcová, L.; Kučerík, J.; Hlavínek, P. Biochar Production from the Pyrolysis of Food Waste: Characterization and Implications for its Use. Sustain Chem Pharm. 2023, 37, 101387. https://doi.org/10.1016/j.scp.2023.101387
https://doi.org/10.1016/j.scp.2023.101387
[78] Godvin Sharmila, V.; Kumar Tyagi, V.; Varjani, S.; Rajesh Banu, S. A Review on the lignocellulosic Derived Biochar-Based Catalyst in Wastewater Remediation: Advanced Treatment Technologies and Machine Learning Tools. Bioresour. Technol. 2023, 387, 129587. https://doi.org/10.1016/j.biortech.2023.129587
https://doi.org/10.1016/j.biortech.2023.129587
[79] Cui, X.; Wang, J.; Wang, X.; Du, G.; Khan, K.Y.; Yan, B.; Cheng, Z.; Chen, G. Pyrolysis of Exhausted Hydrochar Sorbent for Cadmium Separation and Biochar Regeneration. Chemosphere 2022, 306, 135546. https://doi.org/10.1016/j.chemosphere.2022.135546
https://doi.org/10.1016/j.chemosphere.2022.135546
[80] Ambaye, T.G.; Formicola, F.; Sbaffoni, S.; Milanese, C.; Franzetti, A.; Vaccari M. Effect of Biochar on Petroleum Hydrocarbon Degradation and Energy Production in Microbial Electrochemical Treatment. J Environ Chem Eng. 2023, 11, 5. https://doi.org/10.1016/j.jece.2023.110817
https://doi.org/10.1016/j.jece.2023.110817
[81] Qi, Y.; Zhong, Y.; Luo, L.; He, J.; Feng, B.; Wei, Q.; Zhang, K.; Ren, H. Subsurface Constructed Wetlands with Modified Biochar Added for Advanced Treatment of Tailwater: Performance and Microbial Communities. Sci. Total Environ. 2023, 906, 167533. https://doi.org/10.1016/j.scitotenv.2023.167533
https://doi.org/10.1016/j.scitotenv.2023.167533
[82] Qin, X.; Cheng, S.; Xing, B.; Qu, X.; Shi, C.; Meng, W.; Zhang, C.; Xia, H. Preparation of Pyrolysis Products by Catalytic Pyrolysis of Poplar: Application of Biochar in Antibiotic Wastewater Treatment. Chemosphere 2023, 338, 139519. https://doi.org/10.1016/j.chemosphere.2023.139519
https://doi.org/10.1016/j.chemosphere.2023.139519
[83] Su, K.; Hu, G.; Zhao, T.; Dong, H.; Yang, Y.; Pan, H.; Lin, Q. The Ultramicropore Biochar Derived from Waste Distiller's Grains for Wet-Process Phosphoric Acid Purification: Removal Performance and Mechanisms of Cr(VI). Chemosphere 2023, 349, 140877. https://doi.org/10.1016/j.chemosphere.2023.140877
https://doi.org/10.1016/j.chemosphere.2023.140877
[84] Piloni, R.V.; Coelho, L.F.; Sass, D.C.; Lanteri, M.; Zaghete Bertochi, M.A.; Laura Moyano, E.; Contiero, J. Biochars from Spirulina as an Alternative Material in the Purification of Lactic Acid from a Fermentation Broth. Curr. Opin. Green Sustain. Chem. 2021, 4, 100084. https://doi.org/10.1016/j.crgsc.2021.100084
https://doi.org/10.1016/j.crgsc.2021.100084
[85] Wang, Y.; Luo, J.; Qin, J.; Huang, Y.; Ke, T.; Luo, Y.; Yang, M. Efficient Removal of Phytochrome Using Rice Straw-Derived Biochar: Adsorption Performance, Mechanisms, and Practical Applications. Bioresour. Technol. 2023, 376, 128918. https://doi.org/10.1016/j.biortech.2023.128918
https://doi.org/10.1016/j.biortech.2023.128918
[86] Bian, H.; Wang, M.; Huang, J.; Liang, R.; Du, J.; Fang, C.; Shen, C.; Man, Y.B.; Wong, M.H.; Shan, S., et al. Large Particle Size Boosting the Engineering Application Potential of Functional Biochar in Ammonia Nitrogen and Phosphorus Removal from Biogas Slurry. J. Water Process. Eng. 2023, 57, 104640. https://doi.org/10.1016/j.jwpe.2023.104640
https://doi.org/10.1016/j.jwpe.2023.104640
[87] Bibi, A.; Khan, H.; Hussain, S.; Arshad, M.; Wahab, F.; Usama, M.; Khan, K.; Akbal, F. Sustainable Wastewater Purification with Crab Shell-Derived Biochar: Advanced Machine Learning Modeling & Experimental Analysis. Bioresour. Technol. 2023, 390, 129900. https://doi.org/10.1016/j.biortech.2023.129900
https://doi.org/10.1016/j.biortech.2023.129900
[88] Choi, J.; Kim, M.; Choi, J.; Jang, M.; Hyun, S. Sorption Behavior of Three Aromatic Acids (Benzoic Acid, 1-Naphthoic Acid and 9-Anthroic Acid) on Biochar: Cosolvent Effect in Different Liquid Phases. Chemosphere 2023, 349, 140898. https://doi.org/10.1016/j.chemosphere.2023.140898
https://doi.org/10.1016/j.chemosphere.2023.140898
[89] Liu, Z.; Xie, S.; Zhou, H.; Zhao, L.; Yao, Z.; Fan, H.; Si, B.; Yang, G. Organic Contaminants Removal and Carbon Sequestration Using Pig Manure Solid Residue-Derived Biochar: A Novel Closed-Loop Strategy for Anaerobic Liquid Digestate. Chem. Eng. J. 2023, 471, 144601. https://doi.org/10.1016/j.cej.2023.144601
https://doi.org/10.1016/j.cej.2023.144601
[90] Gul, T.; Aslam, M.M.; Khan, A.S.; Iqbal, T.; Ullah, F.; Eldesoky, G.E.; Aljuwayid, A.M.; Akhtar, M.S. Phytotoxic Responses of Wheat to an Imidazolium Based Ionic Liquid in Absence and Presence of Biochar. Chemosphere 2023, 322, 138080. https://doi.org/10.1016/j.chemosphere.2023.138080
https://doi.org/10.1016/j.chemosphere.2023.138080
[91] Lourenço, M.A.O.; Frade, T.; Bordonhos, M.; Castellino, M.; Pinto, M. L.; Bocchini, S. N-doped Sponge-Like Biochar: A Promising CO2 Sorbent for CO₂/CH₄ and CO2/N₂ Gas Separation. Chem. Eng. J. 2023, 470, 144005. https://doi.org/10.1016/j.cej.2023.144005
https://doi.org/10.1016/j.cej.2023.144005
[92] Lee, J.; Lee, S.; Lin, K.Y.A.; Jung, S.; Kwon, E. E. Abatement of Odor Emissions from Wastewater Treatment Plants Using Biochar. Environ. Pollut. 2023, 336, 122426. https://doi.org/10.1016/j.envpol.2023.122426
https://doi.org/10.1016/j.envpol.2023.122426
[93] Guo, T.; Zhang, Y.; Geng, Y.; Chen, J.; Zhu, Z.; Bedane, A.H.; Du, Y. Surface Oxidation Modification of Nitrogen Doping Biochar for Enhancing CO2 Adsorption. Ind Crops Prod. 2023, 206, 117582. https://doi.org/10.1016/j.indcrop.2023.117582
https://doi.org/10.1016/j.indcrop.2023.117582
[94] Feng, Q.; Zhang, J.; Peng, C.; Cai, Z. Synthesis of Modified Sludge Biochar for Flue Gas Denitration: Biochar Properties, Synergistic Efficiency and Mechanism. Waste Manage. 2023, 170, 204-214. https://doi.org/10.1016/j.wasman.2023.08.007
https://doi.org/10.1016/j.wasman.2023.08.007
[95] Wang, Y.; Dou, Z.; Tang, X.; Lian, L.; Liu, Y. Oxidative Absorption of Elemental Mercury in Combustion Flue Gas Using Biochar-Activated Peroxydisulfate System. J. Energy Inst. 2023, 108, 101248. https://doi.org/10.1016/j.joei.2023.101248
https://doi.org/10.1016/j.joei.2023.101248
[96] Cho, S.H.; Lee, S.; Kim, Y.; Song, H.; Lee, J.; Tsang, Y.F.; Chen, W.-H.; Park, Y.-K.; Lee, D.-J.; Jung, S., et al. Applications of Agricultural Residue Biochars to Removal of Toxic Gases Emitted from Chemical Plants: A Review. Sci. Total Environ. 2023, 868, 161655. https://doi.org/10.1016/j.scitotenv.2023.161655
https://doi.org/10.1016/j.scitotenv.2023.161655
[97] Selenius, M.; Ruokolainen, J.; Riikonen, J.; Rantanen, J.; Näkki, S Lehto, V.-P.; Hyttinen, M. Removing Siloxanes and Hydrogen Sulfide from Landfill Gases with Biochar and Activated Carbon Filters. Waste Manage. 2023, 167, 31-38. https://doi.org/10.1016/j.wasman.2023.05.006
https://doi.org/10.1016/j.wasman.2023.05.006
[98] Cao, W.; Xu, H.; Zhang, X.; Xiang, W.; Qi, G.; Wan, L.; Gao, B. Novel Post-Treatment of Ultrasound Assisting with Acid Washing Enhance Lignin-Based Biochar for CO2 Capture: Adsorption Performance and Mechanism. Chem. Eng. J. 2023, 47, 1445231. https://doi.org/10.1016/j.cej.2023.144523
https://doi.org/10.1016/j.cej.2023.144523