Measurement and Correlation of Isobaric Vapor-Liquid Equilibrium Data for Water + 2-Azido-N,N-Dimethylethanamine System at 4 kPa

Hosein Rouhandeh1, Shahram Ghanbari Pakdehi1
1 Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology, P.O. Box: 16765/3454, Tehran, Iran
PDF icon full_text.pdf312.32 KB
Isobaric vapor-liquid equilibrium (VLE) data for binary system of water + 2-azido-N,N-dimethylethanamine (DMAZ) was measured at 4 kPa. The results showed an azeotropic point at x1 = 0.985 and T = 302.17 K. The data was correlated with nonrandom two-liquid (NRTL), Wilson and universal quasi-chemical activity coefficient (UNIQUAC) models for the liquid phase. A comparison of the model performances was made using of the criterion of the average absolute deviation, standard deviation and mean standard deviation in boiling-point temperature. The results indicated that the NRTL activity coefficient model satisfactorily correlated the VLE data.

[1] Schmidt E.: Hydrazine and Its Derivatives, 2nd edn. Wiley, New York 2001

[2] Agrawal J.: High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, Weinheim 2010.

[3] Reddy G., Song J., Mecchi M., Johnson M.: Res.-Gen. Tox. En., 2010, 700, 26.

[4] Aronson J.: The Synthesis and Characterization of Energetic Materials from Sodium Azide, PhD Thesis, Georgia Institute of Technology 2004

[5] Chouireb N., Crespo E., Pereira L. et al.: J. Chem. Eng. Data, 2018, 63, 2394.

[6] Li G., Yin X.: J. Chem. Eng. Data, 2018, 63, 2009.

[7] Liu L., Zhong Y., Zhang R., Tan W.: J. Chem. Eng. Data, 2015, 60, 3268.

[8] Figueiredo B., Da Silva F., Silva C.: Ind. Eng. Chem. Res., 2013, 52, 16044.

[9] Milzetti J., Nayar D., van der Vegt N.: J. Phys. Chem. B, 2018, 2018, 5515.

[10] Vranes M., Tot A., Papovic S. et al.: J. Chem. Thermodyn., 2015, 81, 66.

[11] Torcal M., Langa E., Pardo J. et al. J. Chem. Thermodyn., 2016, 97, 88.

[12] Wisniak J., Ortega J., Fernandez L.: J. Chem. Thermodyn., 2017, 107, 216.

[13] Ma Y., Gao J., Li M. et al.: J. Chem. Thermodyn., 2018, 122, 154.

[14] Lemos C., Rade L., Gilfrida W. et al.: J. Chem. Thermodyn. 2018, 123, 46.

[15] Kokan T., Olds J., Seitzman J., Ludovice P.: Acta Astronaut., 2009, 65, 967.

[16] Smith J., Van Ness H.: Introduction to Chemical Engineering Thermodynamics, 4th edn. McGraw-Hill, New York 1987.

[17] Wisniak J., Ortega J., Fernandez L.: J. Chem. Thermodyn., 2017, 105, 385.

[18] Poling B., Prausnitz J., O΄Connell J.: The Properties of Gases and Liquids, 5th edn. McGraw Hill, New York 2001

[19] Mali N., Yadav S., Ghuge P., Joshi S.: J. Chem. Eng. Data, 2017, 62, 4356.

[20] Yang J., Pan X., Yu M. et al.: J. Mol. Liq., 2018, 268, 19.

[21] Li M., Xu X., Li X. et al.: Sci. Rep., 2017, 7, 9497.

[22] Jia H., Wang H., Ma K. et al.: Chin. J. Chem. Eng., 2018, 26, 993.