Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Mathematical Simulation of Nanofiltration Process: State of Art Review

Serhii Huliienko1, Yaroslav Kornienko1, Svitlana Muzyka1, Kateryna Holubka2
Affiliation: 
1 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Beresteiskyi Ave., 03056 Kyiv, Ukraine 2 University of Montpellier, 163 Auguste Broussonnet Street - 34090, Montpellier, France sergiiguliienko@gmail.com
DOI: 
https://doi.org/10.23939/chcht18.02.187
AttachmentSize
PDF icon full_text.pdf400.91 KB
Abstract: 
A review of publications devoted to the mathematical simulation of the nanofiltration process was carried out, the advantages, limitations, and areas of application of various modeling approaches were determined. It was found that the most effective approaches are based on the extended Nernst-Planck equation, Donnan equilibrium, as well as methods of computational fluid dynamics and molecular dynamics. The use of software for solving nanofiltration simulation problems was considered.
References: 

[1] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267
[2] Semenyshyn, Y.; Atamanyuk, V.; Rymar, T.; Ivashchuk, O.; Hlukhaniuk, A. Mass Transfer in the Solid-Liquid System: Mechanism and Kinetics of the Extraction Process. Chem. Chem. Technol. 2020, 14, 121–128. https://doi.org/10.23939/chcht14.01.121
[3] Havryshko, M.; Popovych, O.; Yaremko, H.; Tymchuk, I.; Malovanyy, M. Analysis of Prospective Technologies of Food Production Wastewater Treatment. Ecol. Eng. Environ. Technol. 2022, 2, 33–40. https://doi.org/10.12912/27197050/145201
[4] Ramana, K. V.; Mohan, K. C.; Ravindhranath, K.; Babu, B. H. Bio-Sorbent Derived from Annona Squamosa for the Removal of Methyl Red Dye in Polluted Waters: A Study on Adsorption Potential. Chem. Chem. Technol. 2022, 16, 274–283. https://doi.org/10.23939/chcht16.02.274
[5] Shon, H. K.; Phuntsho, S.; Chaudhary, D. S.; Vigneswaran, S., Cho, J. Nanofiltration for Water and Wastewater Treatment – A Mini Review. Drink Water Eng Sci. 2013, 6, 47–53. https://doi.org/10.5194/dwes-6-47-2013
[6] Huliienko, S. V.; Korniienko, Y. M.; Gatilov, K. O. Modern Trends in the Mathematical Simulation of Pressure-Driven Membrane Processes. J. Eng. Sci. 2020, 71, F1–F21. https://doi.org/10.21272/jes.2020.7(1).f1
[7] Huliienko, S. V.; Korniyenko, Y. M.; Muzyka, S. M.; Holubka K. Simulation of Reverse Osmosis Process: Novel Approaches and Development Trends. J. Eng. Sci. 2022, 92, F6–F36. https://doi.org/10.21272/jes.2022.9(2).f2
[8] Yaroshchuk, A.; Bruening, M. L.; Zholkovskiy, E. Modelling Nanofiltration of Electrolyte Solutions. Adv. Colloid Interface Sci. 2019, 268, 39–63. https://doi.org/10.1016/j.cis.2019.03.004
[9] Agboola, O.; Maree J.; Kolesnikov, A.; Mbaya, R.; Sadiku, R. Theoretical Performance of Nanofiltration Membranes for Wastewater Treatment. Environ. Chem. Lett. 2015, 13, 37–47. https://doi.org/10.1007/s10311-014-0486-y
[10] Marchetti, P.; Livingston, A. G. Predictive Membrane Transport Models for Organic Solvent Nanofiltration: How Complex Do We Need to Be? J. Membr. Sci. 2015, 476, 530–553. https://doi.org/10.1016/j.memsci.2014.10.030
[11] Schmidt, P.; Lutze, Ph. Characterisation of Organic Solvent Nanofiltration Membranes in Multi-Component Mixtures: Phenomena-based Modelling and Membrane Modelling Maps. J. Membr. Sci. 2013, 445, 183–199. https://doi.org/10.1016/j.memsci.2013.05.062
[12] Zhang, Sh.; Zhou, J.; Fan, L.; Qiu, Y.; Jiang, L.; Zhao, L. Investigating the Mechanism of Nanofiltration Separation of Glucosamine Hydrochloride and N-acetyl Glucosamine. Bioresour. Bioprocess. 2016, 3, 34. https://doi.org/10.1186/s40643-016-0112-x
[13] Anand, A.; Unnikrishnan, B.; Mao, J.-Y.; Lin, H.-J.; Huang, Ch.-Ch. Graphene-based Nanofiltration Membranes for Improving Salt Rejection, Water Flux and Antifouling–A review. Desalination 2018, 429, 119–133. https://doi.org/10.1016/j.desal.2017.12.012
[14] Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration Membranes Review: Recent Advances and Future Prospects. Desalination 2015, 356, 226–254. https://doi.org/10.1016/j.desal.2014.10.043
[15] Ahmed, F. E.; Hashaikeh, R.; Diabat, A.; Hilal, N. Mathematical and Optimization Modelling in Desalination: State-of-the-art and Future Direction. Desalination 2019, 469, 114092. https://doi.org/10.1016/j.desal.2019.114092
[16] Zhou, D.; Zhu, L.; Fu, Y.; Zhu, M.; Xue, L. Development of Lower Cost Seawater Desalination Processes Using Nanofiltration Technologies — A Review. Desalination 2015, 376, 109–116. https://doi.org/10.1016/j.desal.2015.08.020
[17] Souza, V. C.; Quadri, M. G. N. Organic-inorganic hybrid membranes in separation processes: a 10-year review. Braz. J. Chem. Eng. 2013, 30, 683–700. https://doi.org/10.1590/S0104-66322013000400001
[18] Wang, J.; Dlamini, D. S.; Mishra, A. K.; Pendergast, M. Th. M.; Wong, M. C. Y.; Mamba, B. B.; Freger, V.; Verliefd, A. R. D.; Hoek, E. M. V. A Critical Review of Transport through Osmotic Membranes. J. Membr. Sci. 2014, 454, 516–537. https://doi.org/10.1016/j.memsci.2013.12.034
[19] Keir, G.; Jegatheesan, V. A Review of Computational Fluid Dynamics Applications in Pressure-Driven Membrane Filtration. Rev. Environ. Sci. Biotechnol. 2013, 13, 183–201. https://doi.org/10.1007/s11157-013-9327-x
[20] Ebro, H.; Kim, Y. M.; Kim, J. H. Molecular Dynamics Simulations in Membrane-Based Water Treatment Processes: A Systematic Overview. J. Membr. Sci. 2013, 438, 112–125. https://doi.org/10.1016/j.memsci.2013.03.027
[21] Zhang, Y.; Zhu, Y.; Wang, A.; Gao, Q.; Qin, Y.; Chen, Y.; Lu, X. Progress in Molecular-Simulation-Based Research on the Effects of Interface-induced Fluid Microstructures on Flow Resistance. Chin. J. Chem. Eng. 2019, 27, 1403–1415. https://doi.org/10.1016/j.cjche.2019.02.002
[22] Peshev, D.; Livingston, A. G. OSN Designer, a Tool for Predicting Organic Solvent Nanofiltration Technology Performance Using ASPEN ONE, MATLAB and CAPE OPEN. Chem. Eng. Sci. 2013, 104, 975–987. https://doi.org/10.1016/j.ces.2013.10.033
[23] Abejon, R.; Garea, A.; Irabien, A. Organic Solvent Recovery and Reuse in Pharmaceutical Purification Processes by Nanofiltration Membrane Cascades. Chem. Eng. Trans. 2015, 43, 1057–1062. https://doi.org/10.3303/CET1543177
[24] Hidalgo, A. M.; León, G.; Gómez, M.; Murcia, M. D.; Gómez, E.; Macario, J. A. Removal of Different Dye Solutions: A Comparison Study Using a Polyamide NF Membrane. Membranes 2020, 10, 408. https://doi.org/10.3390/membranes10120408
[25] Yan, Z-Q.; Zeng, L-M.; Li, Q.; Liu, T-Y.; Matsuyama, H.; Wang, X-L. Selective Separation of Chloride and Sulfate by Nanofiltration for High Saline Wastewater Recycling. Sep. Purif. Technol. 2016, 166, 135–141. https://doi.org/10.1016/j.seppur.2016.04.009
[26] Shahmansouri, A.; Bellona, C. Application of Quantitative Structure–Property Relationships (QSPRs) to Predict the Rejection of Organic Solutes by Nanofiltration. Sep. Purif. Technol. 2013, 118, 627–638. https://doi.org/10.1016/j.seppur.2013.07.050
[27] Schlackl, K.; Herchl, R.; Samhaber, W. Nanofiltration of Succinic Acid in Strong Alkaline Conditions. Membranes 2019, 9, 147. https://doi.org/10.3390/membranes9110147
[28] Kim, J. H.; Na, J.-G.; Shim, H. J.; Chang, Y. K. Modeling of Ammonium Lactate Recovery and Impurity Removal from Simulated Fermentation Broth by Nanofiltration. J. Membr. Sci. 2012, 396, 110–118. https://doi.org/10.1016/j.memsci.2012.01.003
[29] Nair, R. R.; Protasova, E.; Strand, S.; Bilstad, T. Implementation of Spiegler–Kedem and Steric Hindrance Pore Models for Analyzing Nanofiltration Membrane Performance for Smart Water Production. Membranes 2018, 8, 78. https://doi.org/10.3390/membranes8030078
[30] Peddie, W. L.; van Rensburg, J. N.; Vosloo, H. C. M.; van der Gryp, P. Technological Evaluation of Organic Solvent Nanofiltration for the Recovery of Homogeneous Hydroformylation Catalysts. Chem. Eng. Res. Des. 2017, 121, 219–232. https://doi.org/10.1016/j.cherd.2017.03.015
[31] ten Kate, A. J. B.; Schutyser, M.A.I.; Kuzmanovic, B.; Westerink, J.B.; Manuhutu, F.; Bargeman, G. Thermodynamic Perspective on Negative Retention Effects in Nanofiltration of Concentrated Sodium Chloride Solutions. Sep. Purif. Technol. 2020, 250, 117242. https://doi.org/10.1016/j.seppur.2020.117242
[32] Minelli, M.; Sarti, G. C. Modeling Mass Transport in Dense Polymer Membranes: Cooperative Synergy among Multiple Scale Approaches. Curr. Opin. Chem. Eng. 2020, 28, 43–50. https://doi.org/10.1016/j.coche.2020.01.004
[33] Qian, J.; Yan, R.; Liu, X.; Li, Ch.; Zhang, X. Modification to Solution-Diffusion Model for Performance Prediction of Nanofiltration of Long-alkyl-chain Ionic Liquids Aqueous Solutions Based on Ion Cluster. Green Energy Environ. 2020, 5, 105–113. https://doi.org/10.1016/j.gee.2018.10.001
[34] Li, C.; Ma, Y.; Li, H.; Peng, G. Exploring the Nanofiltration Mass Transfer Characteristic and Concentrate Process of Procyanidins from Grape Juice. Food Sci. Nutr. 2019, 7, 1884–1890. https://doi.org/10.1002/fsn3.1045
[35] Abels, C.; Redepenning, C.; Moll, A.; Melin, T.; Wessling, M. Simple Purification of Ionic Liquid Solvents by Nanofiltration in Biorefining of Lignocellulosic Substrates. J. Membr. Sci. 2012, 405–406, 1–10. https://doi.org/10.1016/j.memsci.2011.12.020
[36] Shi, B.; Marchetti, P.; Peshev, D.; Zhang, Sh.; Livingston, A. G. Performance of Spiral-Wound Membrane Modules in Organic Solvent Nanofiltration – Fluid Dynamics and Mass Transfer Characteristics. J. Membr. Sci. 2015, 494, 8–24. https://doi.org/10.1016/j.memsci.2015.07.044
[37] Micovic, J.; Werth, K.; Lutze, Ph. Hybrid Separations Combining Distillation and Organic Solvent Nanofiltration for Separation of Wide Boiling Mixtures. Chem. Eng. Res. Des. 2014, 92, 2131–2147. https://doi.org/10.1016/j.cherd.2014.02.012
[38] Werhan, H.; Farshori, A.; von Rohr, Ph. R. Separation of Lignin Oxidation Products by Organic Solvent Nanofiltration. J. Membr. Sci. 2012, 423–424, 404–412. https://doi.org/10.1016/j.memsci.2012.08.037
[39] Werth, K.; Kaupenjohann, P.; Knierbein, M.; Skiborowski, M. Solvent Recovery and Deacidification by Organic Solvent Nanofiltration: Experimental Investigation and Mass Transfer Modelling. J. Membr. Sci. 2017, 528, 369–380. https://doi.org/10.1016/j.memsci.2017.01.021
[40] Keucken, A.; Wang, Y.; Tng, K. H.; Leslie, G.; Spanjer, T.; Köhler, S. J. Optimizing Hollow Fibre Nanofiltration for Organic Matter Rich Lake Water. Water 2016, 8, 430. https://doi.org/10.3390/w8100430
[41] Altaee, A.; Hilal, N. High Recovery Rate NF–FO–RO Hybrid System for Inland Brackish Water Treatment. Desalination 2015, 363, 19–25. https://doi.org/10.1016/j.desal.2014.12.017
[42] Shaaban, A. M. F.; Hafez, A. I.; Abdel-Fatah, M. A.; Abdel-Monem, N. M.; Mahmoud, M. H. Process Engineering Optimization of Nanofiltration Unit for the Treatment of Textile Plant Effluent in View of Solution Diffusion Model. Egypt. J. Pet. 2016, 25, 79–90. https://doi.org/10.1016/j.ejpe.2015.03.018
[43] Marchetti, P.; Butte, A.; Livingston, A. G. An Improved Phenomenological Model for Prediction of Solvent Permeation Through Ceramic NF and UF Membranes. J. Membr. Sci. 2012, 415–416, 444–458. https://doi.org/10.1016/j.memsci.2012.05.030
[44] Fierro, D.; Boschetti-de-Fierro, A.; Abetz, V. The Solution-Diffusion with Imperfections Model as a Method to Understand Organic Solvent Nanofiltration of Multicomponent Systems. J. Membr. Sci. 2012, 413–414, 91–101. https://doi.org/10.1016/j.memsci.2012.04.027
[45] Werth, K.; Kaupenjohann, P.; Skiborowski, M. The Potential of Organic Solvent Nanofiltration Processes for Oleochemical Industry. Sep. Purif. Technol. 2017, 182, 185–196. https://doi.org/10.1016/j.seppur.2017.03.050
[46] Pérez, L.; Escudero, I.; Arcos-Martínez, M. J.; Benito, J. M. Application of the Solution-Diffusion-Film Model for the Transfer of Electrolytes and Uncharged Compounds in a Nanofiltration Membrane. J Ind Eng Chem. 2017, 47, 368–74. https://doi.org/10.1016/j.jiec.2016.12.007
[47] Yonge, D.T.; Biscardi, P. G.; Duranceau, S. J. Modeling Ionic Strength Effects on Hollow-Fiber Nanofiltration Membrane Mass Transfer. Membranes 2018, 8, 37. https://doi.org/10.3390/membranes8030037
[48] Yaroshchuk, A.; Bruening, M. L. An analytical Solution of the Solution-Diffusion-Electromigration Equations Reproduces Trends in ion Rejections During Nanofiltration of Mixed Electrolytes. J. Membr. Sci. 2017, 523, 361–372. https://doi.org/10.1016/j.memsci.2016.09.046
[49] Madsen, H.T.; Søgaard, E.G. Applicability and Modelling of Nanofiltration and Reverse Osmosis for Remediation of Groundwater Polluted with Pesticides and Pesticide Transformation Products. Sep. Purif. Technol. 2014, 125, 111–119. https://doi.org/10.1016/j.seppur.2014.01.038
[50] Liu, Y-l.; Wei, W.; Wang, X-m.; Yang, H-w.; Xie, Y.F. Relating the Rejections of Oligomeric Ethylene Glycols and Saccharides by Nanofiltration: Implication for Membrane Pore Size Determination. Sep. Purif. Technol. 2018, 205, 151–158. https://doi.org/10.1016/j.seppur.2018.05.042
[51] Xu, R.; Zhou, M.; Wang, H.; Wang, X.; Wen, X. Influences of Temperature on the Retention of PPCPs by Nanofiltration Membranes: Experiments and Modeling Assessment. J. Membr. Sci. 2020, 599, 117817. https://doi.org/10.1016/j.memsci.2020.117817
[52] Kong, F.-x.; Yang, H.-w.; Wang, X.-m.; Xie, Y. F. Assessment of the Hindered Transport Model in Predicting the Rejection of Trace Organic Compounds by Nanofiltration. J. Membr. Sci. 2016, 498, 57–66. https://doi.org/10.1016/j.memsci.2015.09.062
[53] Aguirre Montesdeoca, V.; Van der Padt, A., Boom, R.M., Janssen, A.E.M. Modelling of Membrane Cascades for the Purification of Oligosaccharides. J. Membr. Sci. 2016, 520, 712–722. https://doi.org/10.1016/j.memsci.2016.08.031
[54] Darvishmanesh, S.; Van der Bruggen, B. Mass Transport through Nanostructured Membranes: Towards a Predictive Tool. Membranes 2016, 6, 49. https://doi.org/10.3390/membranes6040049
[55] Labban, O.; Chong, T. H.; Lienhard, V J. H. Design and Modeling of Novel Low-Pressure Nanofiltration Hollow Fiber Modules for Water Softening and Desalination Pretreatment. Desalination 2018, 439, 58–72. https://doi.org/10.1016/j.desal.2018.04.002
[56] Déon, S.; Escoda, A.; Fievet, P.; Dutournié, P.; Bourseau P. How to Use a Multi-Ionic Transport Model to Fully Predict Rejection of Mineral Salts by Nanofiltration Membranes. Chem. Eng. J. 2012, 189–190, 24–31. https://doi.org/10.1016/j.cej.2012.02.014
[57] Thibault, K.; Zhu, H.; Szymczyk, A.; Li, G. The Averaged Potential Gradient Approach to Model the Rejection of Electrolyte Solutions Using Nanofiltration: Model Development and Assessment for Highly Concentrated Feed Solutions. Sep. Purif. Technol. 2015, 153, 126–37. https://doi.org/10.1016/j.seppur.2015.08.041
[58] Blumenschein, S.; Böcking, A.; Kätzel, U.; Postel, S.; Wessling, M. Rejection Modeling of Ceramic Membranes in Organic Solvent Nanofiltration. J. Membr. Sci. 2016, 510, 191–200. https://doi.org/10.1016/j.memsci.2016.02.042
[59] Fadaei, F.; Shirazian, S.; Ashrafizadeh, S. N. Mass Transfer Modeling of ion Transport through Nanoporous Media. Desalination 2011, 281, 325–333. https://doi.org/10.1016/j.desal.2011.08.025
[60] Dey, P.; Linnanen, L.; Pal, P. Separation of Lactic Acid from Fermentation Broth by Cross Flow Nanofiltration: Membrane Characterization and Transport Modelling. Desalination 2012, 288, 47–57. https://doi.org/10.1016/j.desal.2011.12.009
[61] Farsi, A.; Boffa, V.; Qureshi, H. F.; Nijmeijer, A.; Winnubst, L.; Christensen, M. L. Modeling Water Flux and Salt Rejection of Mesoporous γ-Alumina and Microporous Organosilica Membranes. J. Membr. Sci. 2014, 470, 307–315. https://doi.org/10.1016/j.memsci.2014.07.038
[62] Pal, P.; Das, P.; Chakrabortty, S.; Thakura, R. Dynamic Modelling of a Forward Osmosis-Nanofiltration Integrated Process for Treating Hazardous Wastewater. Environ. Sci. Pollut. Res. 2016, 23, 21604–21618. https://doi.org/10.1007/s11356-016-7392-8
[63] Silva, V.; Martın, A.; Martınez, F.; Malfeito, J.; Pradanos, P.; Palacio, L.; Hernandez, A. Electrical Characterization of NF Membranes. A Modified Model with Charge Variation along the Pores. Chem. Eng. Sci. 2011, 66, 2898–2911. https://doi.org/10.1016/j.ces.2011.03.025
[64] Zerafat, M.M.; Shariati-Niassar, M.; Hashemi, S.J.; Sabbaghi, S.; Ismail, A.F.; Matsuura, T. Mathematical Modeling of Nanofiltration for Concentrated Electrolyte Solutions. Desalination 2013, 320, 17–23. https://doi.org/10.1016/j.desal.2013.04.015
[65] Pal, P.; Sardar, M.; Pal, M.; Chakrabortty, S.; Nayak, J. Modelling Forward Osmosis-Nanofiltration Integrated Process for Treatment and Recirculation of Leather Industry Wastewater. Comput Chem Eng. 2019, 127, 99–110. https://doi.org/10.1016/j.compchemeng.2019.05.018
[66] Kumar, R.; Chakrabortty, S.; Pal, P. Membrane-Integrated Physico-Chemical Treatment of Coke-Oven Wastewater: Transport Modelling and Economic Evaluation. Environ. Sci. Pollut. Res. 2015, 22, 6010–6023. https://doi.org/10.1007/s11356-014-3787-6
[67] Luo, J.; Wan, Y. Effect of highly Concentrated Salt on Retention of Organic Solutes by Nanofiltration Polymeric Membranes. J. Membr. Sci. 2011, 372, 145–153. https://doi.org/10.1016/j.memsci.2011.01.066
[68] Chakrabortty, S.; Sen, M.; Pal, P. Arsenic Removal from Contaminated Groundwater by Membrane-Integrated Hybrid Plant: Optimization and Control Using Visual Basic Platform. Environ. Sci. Pollut. Res. 2014, 21, 3840–3857. https://doi.org/10.1007/s11356-013-2382-6
[69] Chakrabortty, S.; Roy, M.; Pal, P. Removal of Fluoride from Contaminated Groundwater by Cross Flow Nanofiltration: Transport Modeling and Economic Evaluation. Desalination 2013, 313, 115–124. https://doi.org/10.1016/j.desal.2012.12.021
[70] Oatley-Radcliffe, D. L.; Williams, S. R.; Barrow, M. S.; Williams, P. M. Critical Appraisal of Current Nanofiltration Modelling Strategies for Seawater Desalination and Further Insights on Dielectric Exclusion. Desalination 2014, 343, 154–161. https://doi.org/10.1016/j.desal.2013.10.001
[71] Roy, Y.; Sharqawy, M. H.; Lienhard, J. H. Modeling of Flat-Sheet and Spiral-Wound Nanofiltration Configurations and its Application in Seawater Nanofiltration. J. Membr. Sci. 2015, 493, 360–372. https://doi.org/10.1016/j.memsci.2015.06.030
[72] Bonner, R.; Germishuizen, Ch.; Franzsen, S. Prediction of Nanofiltration Rejection Performance in Brackish Water Reverse Osmosis Brine Treatment Processes. J. Water Process. Eng. 2019, 32, 100900. https://doi.org/10.1016/j.jwpe.2019.100900
[73] Labban, O.; Liu, Ch.; Chong, T. H.; Lienhard, J. H. Fundamentals of Low-Pressure Nanofiltration: Membrane Characterization, Modeling, and Understanding the Multi-Ionic Interactions in Water Softening. J. Membr. Sci. 2017, 521, 18–32. https://doi.org/10.1016/j.memsci.2016.08.062
[74] Chakrabortty, S.; Nayak, J.; Pal, P.; Kumar, R.; Chakraborty, P. Separation of COD, Sulphate and Chloride from Pharmaceutical Wastewater Using Membrane Integrated System: Transport Modeling Towards Scale-Up. J. Environ. Chem. Eng. 2020, 8, 104275. https://doi.org/10.1016/j.jece.2020.104275
[75] Pal, P.; Thakura, R., Chakrabortty S. Performance Analysis and Optimization of an Advanced Pharmaceutical Wastewater Treatment Plant Through a Visual Basic Software Tool (PWWT.VB). Environ. Sci. Pollut. Res. 2016, 23, 9901–9917. https://doi.org/10.1007/s11356-016-6238-8
[76] Roy, Y.; Warsinger, D. M.; Lienhard, J. H. Effect of Temperature on Ion Transport in Nanofiltration Membranes: Diffusion, Convection and Electromigration. Desalination 2017, 420, 241–257. https://doi.org/10.1016/j.desal.2017.07.020
[77] Déon, S.; Escoda, A.; Fievet, P. A Transport Model Considering Charge Adsorption Inside Pores to Describe Salts Rejection by Nanofiltration Membranes. Chem. Eng. Sci. 2011, 66, 2823–2832. https://doi.org/10.1016/j.ces.2011.03.043
[78] Bajpai, Sh.; Rajendran, R. M.; Hooda, S. Modeling the Performance of HPA Membrane for Sulfate Ion Removal from Ternary Ion System. Korean J. Chem. Eng. 2019, 36, 1648–1656. https://doi.org/10.1007/s11814-019-0357-0
[79] Fang, J.; Deng, B. Rejection and Modeling of Arsenate by Nanofiltration: Contributions of Convection, Diffusion and Electromigration to Arsenic Transport. J. Membr. Sci. 2014, 453, 42–51. https://doi.org/10.1016/j.memsci.2013.10.056
[80] Cathie Lee, W.P.; Mah, Sh.-K.; Leo, C.P.; Wu, T. Y.; Chai, S.-P. Phosphorus Removal by NF90 Membrane: Optimisation Using Central Composite Design. J. Taiwan Inst. Chem. Eng. 2014, 45, 1260–1269. https://doi.org/10.1016/j.jtice.2014.02.011
[81] Bandini, S.; Morelli, V. Effect of Temperature, pH and Composition on Nanofiltration of Mono/Disaccharides: Experiments and Modeling Assessment. J. Membr. Sci. 2017, 533, 57–74. https://doi.org/10.1016/j.memsci.2017.03.021
[82] Liu, H.; Zhao, L.; Fan, L.; Jiang, L.; Qiu, Y.; Xia, Q.; Zhou J. Establishment of a Nanofiltration Rejection Sequence and Calculated Rejections of Available Monosaccharides. Sep. Purif. Technol. 2016, 163, 319–330. https://doi.org/10.1016/j.seppur.2016.03.016
[83] Shah, A. D.; Huang, Ch.-H.; Kim, J.-H. Mechanisms of Antibiotic Removal by Nanofiltration Membranes: Model Development and Application. J. Membr. Sci. 2012, 389, 234–244. https://doi.org/10.1016/j.memsci.2011.10.034
[84] Balannec, B.; Ghoufi, A.; Szymczyk, A. Nanofiltration Performance of Conical and Hourglass Nanopores. J. Membr. Sci. 2018, 552, 336–340. https://doi.org/10.1016/j.memsci.2018.02.026
[85] Fadaei, F.; Hoshyargar, V.; Shirazian, S.; Ashrafizadeh S. Mass Transfer Simulation of Ion Separation by Nanofiltration Considering Electrical and Dielectrical Effects. Desalination 2012, 284, 316–323. https://doi.org/10.1016/j.desal.2011.09.018
[86] Fridman-Bishop, N.; Tankus, K. A.; Freger, V. Permeation Mechanism and Interplay between Ions in Nanofiltration. J. Membr. Sci. 2018, 548, 449–458. https://doi.org/10.1016/j.memsci.2017.11.050
[87] Zhu, Y.; Zhu, H.; Li, G.; Mai, Zh.; Gu, Y. The Effect of Dielectric Exclusion on the Rejection Performance of Inhomogeneously Charged Polyamide Nanofiltration Membranes. J Nanopart Res. 2019, 21, 217. https://doi.org/10.1007/s11051-019-4665-4
[88] Marecka-Migacz, A.; Mitkowski, P. T.; Nedzarek, A., Rózanski, J.; Szaferski, W. Effect of pH on Total Volume Membrane Charge Density in the Nanofiltration of Aqueous Solutions of Nitrate Salts of Heavy Metals. Membranes 2020, 10, 235. https://doi.org/10.3390/membranes10090235
[89] Ortiz-Albo, P.; Ibañez R.; Urtiaga A.; Ortiz I. Phenomenological Prediction of Desalination Brines Nanofiltration through the Indirect Determination of Zeta Potential. Sep. Purif. Technol. 2019, 210, 746–753. https://doi.org/10.1016/j.seppur.2018.08.066
[90] Marecka-Migacz, A.; Mitkowski, P. T.; Antczak, J.; Rózanski, J.; Prochaska K. Assessment of the Total Volume Membrane Charge Density through Mathematical Modeling for Separation of Succinic Acid Aqueous Solutions on Ceramic Nanofiltration Membrane. Processes 2019, 7, 559. https://doi.org/10.3390/pr7090559
[91] Micari, M.; Diamantidou, D.; Heijman, B.; Moser, M.; Haidari A., Spanjers, H.; Bertsch V. Experimental and Theoretical Characterization of Commercial Nanofiltration Membranes for the Treatment of Ion Exchange Spent Regenerant. J. Membr. Sci. 2020, 606, 118117. https://doi.org/10.1016/j.memsci.2020.118117
[92] Wang, X.; Li B.; Zhang, T.; Li, X. Performance of Nanofiltration Membrane in Rejecting Trace Organic Compounds: Experiment and Model Prediction. Desalination 2015, 370, 7–16. https://doi.org/10.1016/j.desal.2015.05.010
[93] Kumar, V. S.; Hariharan, K. S.; Mayya, K. S.; Han, S. Volume Averaged Reduced Order Donnan Steric Pore Model for Nanofiltration Membranes. Desalination 2013, 322, 21–28. https://doi.org/10.1016/j.desal.2013.04.030
[94] Wang, Zh.; Xiao, K.; Wang, X. Role of Coexistence of Negative and Positive Membrane Surface Charges in Electrostatic Effect for Salt Rejection by Nanofiltration. Desalination 2018, 444, 75–83. https://doi.org/10.1016/j.desal.2018.07.010
[95] Escoda, A.; Déon, S.; Fievet, P. Assessment of Dielectric Contribution in the Modeling of Multi-Ionic Transport Through Nanofiltration Membranes. J. Membr. Sci. 2011, 378, 214–223. https://doi.org/10.1016/j.memsci.2011.05.004
[96] Karakhim, S. O.; Zhuk, P. F.; Kosterin, S. O. Kinetics Simulation of Transmembrane Transport of Ions and Molecules Through a Semipermeable Membrane. J. Bioenerg. Biomembr. 2020, 52, 47–60. https://doi.org/10.1007/s10863-019-09821-8
[97] Hoshyargar, V.; Fadaei, F.; Ashrafizadeh, S. N. Mass Transfer Simulation of Nanofiltration Membranes for Electrolyte Solutions through Generalized Maxwell-Stefan Approach. Korean J. Chem. Eng. 2015, 32, 1388–1404. https://doi.org/10.1007/s11814-014-0329-3
[98] Saeed, A.; Vuthaluru, R.; Vuthaluru, H. B. Investigations into the Effects of Mass Transport and Flow Dynamics of Spacer Filled Membrane Modules Using CFD. Chem. Eng. Res. Des. 2015, 93, 79–99. https://doi.org/10.1016/j.cherd.2014.07.002
[99] Kaufman, Y.; Kasher, R.; Lammertink, R. G. H.; Freger, V. Microfluidic NF/RO Separation: Cell Design, Performance and Application. J. Membr. Sci. 2012, 396, 67–73. https://doi.org/10.1016/j.memsci.2011.12.052
[100] Asefi, H.; Alighardashi, A.; Fazeli, M., Fouladitajar A. CFD Modeling and Simulation of Concentration Polarization Reduction by Gas Sparging Cross-flow Nanofiltration. J. Environ. Chem. Eng. 2019, 7, 103275. https://doi.org/10.1016/j.jece.2019.103275
[101] Cao, H.; O'Rourke, M.; Habimana, O.; Casey, E. Analysis of Surrogate Bacterial Cell Transport to Nanofiltration Membranes: Effect of Salt Concentration and Hydrodynamics. Sep. Purif. Technol. 2018, 207, 498–505. https://doi.org/10.1016/j.seppur.2018.06.072
[102] Onorato, C.; Gaedtke, M.; Kespe, M.; Nirschl, H.; Schäfer, A. I. Renewable Energy Powered Membrane Technology: Computational Fluid Dynamics Evaluation of System Performance with Variable Module Size and Fluctuating Energy. Sep. Purif. Technol. 2019, 220, 206–216. https://doi.org/10.1016/j.seppur.2019.02.041
[103] Kostoglou, M.; Karabelas, A. J. Comprehensive Simulation of Flat-Sheet Membrane Element Performance in Steady State Desalination. Desalination 2013, 316, 91–102. https://doi.org/10.1016/j.desal.2013.01.033
[104] Naskar, M.; Rana, K.; Chatterjee, D.; Dhara, T.; Sultana, R.; Sarkar, D. Design, Performance Characterization and Hydrodynamic Modeling of Intermeshed Spinning Basket Membrane (ISBM) Module. Chem. Eng. Sci. 2019, 206, 446–462. https://doi.org/10.1016/j.ces.2019.05.049
[105] Dzhonova-Atanasova, D. B.; Tsibranska, I. H.; Paniovska, S. P. CFD Simulation of Cross-Flow Filtration. Chem. Eng. Trans. 2018, 70, 2041–2046. https://doi.org/10.3303/CET1870341
[106] Trojanowska, A.; Tsibranska, I.; Dzhonova, D.; Wroblewska, M.; Haponska, M.; Jovancic, P.; Marturano, V.; Tylkowski, B. Ultrasound-Assisted Extraction of Biologically Active Compounds and Their Successive Concentration by Using Membrane Processes. Chem. Eng. Res. Des. 2019, 147, 378–389. https://doi.org/10.1016/j.cherd.2019.05.018
[107] Kerdi, S.; Qamar, A.; Alpatova, A.; Vrouwenvelder, J. S.; Ghaffour, N. Membrane Filtration Performance Enhancement and Biofouling Mitigation Using Symmetric Spacers with Helical Filaments. Desalination 2020, 484, 114454. https://doi.org/10.1016/j.desal.2020.114454
[108] Koutsou, C. P.; Karabelas, A. J. A Novel Retentate Spacer Geometry for Improved Spiral Wound Membrane (SWM) Module Performance. J. Membr. Sci. 2015, 488, 129–142. https://doi.org/10.1016/j.memsci.2015.03.064
[109] Lim, K. B.; Wang, P. Ch.; An, H.; Yu, S. C. M. Computational Studies for the Design Parameters of Hollow Fibre Membrane Modules. J. Membr. Sci. 2017, 529, 263–273. https://doi.org/10.1016/j.memsci.2017.01.053
[110] Min, J.; Zhang, B. Convective Mass Transfer Enhancement in a Membrane Channel by Delta Winglets and Their Comparison with Rectangular Winglets. Chin. J. Chem. Eng. 2015, 23, 1755–1762. https://doi.org/10.1016/j.cjche.2015.09.006
[111] Qamar, A.; Bucs, S.; Picioreanu, C.; Vrouwenvelder, J.; Ghaffour, N. Hydrodynamic Flow Transition Dynamics in a Spacer Filled Filtration Channel Using Direct Numerical Simulation. J. Membr. Sci. 2019, 590, 117264. https://doi.org/10.1016/j.memsci.2019.117264
[112] Tonova, K.; Lazarova, M.; Dencheva-Zarkova, M.; Paniovska, S.; Tsibranska, I.; Stanoev, V.; Dzhonova, D.; Genova, J. Separation of Glucose, other Reducing Sugars and Phenolics from Natural Extract by Nanofiltration: Effect of Pressure and Cross-Flow Velocity. Chem. Eng. Res. Des. 2020, 162, 107–116. https://doi.org/10.1016/j.cherd.2020.07.030
[113] Yang, Zh.; Cheng, J.; Yang, Ch.; Liang, B. CFD-based Optimization and Design of Multi-Channel Inorganic Membrane Tubes. Chin. J. Chem. Eng. 2016, 24, 1375–1385. https://doi.org/10.1016/j.cjche.2016.05.044
[114] Al-Rudainy, B.; Galbe, M.; Wallberg O. From Lab-Scale to On-Site Pilot Trials for the Recovery of Hemicellulose by Ultrafiltration: Experimental and Theoretical Evaluations. Sep. Purif. Technol. 2020, 250, 117187. https://doi.org/10.1016/j.seppur.2020.117187
[115] Cortés-Juan, F.; Balannec, B.; Renouard, T. CFD-assisted Design Improvement of a Bench-Scale Nanofiltration Cell. Sep. Purif. Technol. 2011, 82, 177–184. https://doi.org/10.1016/j.seppur.2011.09.010
[116] Lee, Y. K.; Won, Y.-J.; Yoo, J. H.; Ahn, K. H.; Lee, Ch.-H. Flow Analysis and Fouling on the Patterned Membrane Surface. J. Membr. Sci. 2013, 427, 320–325. https://doi.org/10.1016/j.memsci.2012.10.010
[117] Ronen, A.; Lerman, S.; Ramon, G. Z.; Dosoretz, C. G. Experimental Characterization and Numerical Simulation of the Anti-Biofuling Activity of Nanosilver-Modified Feed Spacers in Membrane Filtration. J. Membr. Sci. 2015, 475, 320–329. https://doi.org/10.1016/j.memsci.2014.10.042
[118] Koutsou, C.P.; Karabelas, A.J.; Kostoglou, M. Membrane Desalination under Constant Water Recovery – The Effect of Module Design Parameters on System Performance. Sep. Purif. Technol. 2015, 147, 90–113. https://doi.org/10.1016/j.seppur.2015.04.012
[119] Yao, L.; Qin, Zh.; Chen, Q.; Zhao, M.; Zhao, H.; Ahmad, W.; Fan, L.; Zhao, L. Insights Into the Nanofiltration Separation Mechanism of Monosaccharides by Molecular Dynamics Simulation. Sep. Purif. Technol. 2018, 205, 48–57. https://doi.org/10.1016/j.seppur.2018.04.056
[120] Suk, M. E. Single-File Water Flux Through Two-Dimensional Nanoporous Membranes. Nanoscale Res. Lett. 2020, 15, 204. https://doi.org/10.1186/s11671-020-03436-4
[121] Liu, J.; Xu, Q.; Jiang, J. A Molecular Simulation Protocol for Swelling and Organic Solvent Nanofiltration of Polymer Membranes. J. Membr. Sci. 2019, 573, 639–646. https://doi.org/10.1016/j.memsci.2018.12.035
[122] Teng, X.; Fang, W.; Liang, Y.; Lin, Sh.; Lin, H.; Liu, Sh.; Wang, Zh.; Zhu, Y.; Jin, J. High-Performance Polyamide Nanofiltration Membrane with Arch-Bridge Structure on a Highly Hydrated Cellulose Nanofiber Support. Sci. China Mater. 2020, 63, 2570–2581. https://doi.org/10.1007/s40843-020-1335-x
[123] Xu, Q.; Jiang, J. Effects of Functionalization on the Nanofiltration Performance of PIM-1: Molecular Simulation Investigation. J. Membr. Sci. 2019, 591, 117357. https://doi.org/10.1016/j.memsci.2019.117357
[124] Liu, J.; Kong, X.; Jiang, J. Solvent Nanofiltration through Polybenzimidazole Membranes: Unravelling the Role of Pore Size from Molecular Simulations. J. Membr. Sci. 2018, 564, 782–787. https://doi.org/10.1016/j.memsci.2018.07.086
[125] Azamat, J.; Baghbani, N. B.; Erfan-Niya, H. Atomistic Understanding of Functionalized γ-graphyne-1 Nanosheet Membranes for Water Desalination. J. Membr. Sci. 2020, 604, 118079. https://doi.org/10.1016/j.memsci.2020.118079
[126] Cong, W.; Gao, W.; Garvey, Ch. J.; Dumée, L. F.; Zhang, J.; Kent, B.; Wang, G.; She, F.; Kong, L. In Situ SAXS Measurement and Molecular Dynamics Simulation of Magnetic Alignment of Hexagonal LLC Nanostructures. Membranes 2018, 8, 123. https://doi.org/10.3390/membranes8040123
[127] Zhang, X.; Liu, Ch.; Yang, J.; Zhu, Ch.-Y.; Zhang, L.; Xu, Zh.-K. Nanofiltration Membranes with Hydrophobic Microfiltration Substrates for Robust Structure Stability and High Water Permeation Flux. J. Membr. Sci. 2020, 593, 117444. https://doi.org/10.1016/j.memsci.2019.117444
[128] Calabrò, F. Modeling the Effects of Material Chemistry on Water Flow Enhancement in Nanotube Membranes. MRS Bull. 2017, 42, 289–293. https://doi.org/10.1557/mrs.2017.58
[129] da Silva Arouche, T.; dos Santos Cavaleiro, R. M.; Tanoue, P. S. M.; Sousa de Sa Pereira, T.; Filho, T. A.; de Jesus Chaves Neto, A. M. Heavy Metals Nanofiltration Using Nanotube and Electric Field by Molecular Dynamics. J. Nanomater. 2020, 2020, 4063201. https://doi.org/10.1155/2020/4063201
[130] Calo, V. M.; Iliev, O.; Lakdawala, Z.; Leonard, K. H. L.; Printsypar, G. Pore-Scale Modeling and Simulation of Flow, Transport, and Adsorptive or Osmotic Effects in Membranes: The Influence of Membrane Microstructure. Int J Adv Eng Sci Appl Math. 2015, 7, 2–13. https://doi.org/10.1007/s12572-015-0132-3
[131] Sofos, F.; Karakasidis, Th. E.; Giannakopoulos, A. E.; Liakopoulos, A. Molecular Dynamics Simulation on Flows in Nano-Ribbed and Nano-Grooved Channels. Heat Mass Transf. 2016, 52, 153–162. https://doi.org/10.1007/s00231-015-1601-8
[132] Xu, Q.; Jiang, J. Molecular Simulations of Liquid Separations in Polymer Membranes. Curr. Opin. Chem. Eng. 2020, 28, 66–74. https://doi.org/10.1016/j.coche.2020.02.001