Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Mass Transfer during Boric Acid Dissolution

Oleksandr Kuzyk1, Volodymyr Atamaniuk1, Yaroslav Gumnitsky1
Affiliation: 
1 Lviv Polytechnic National University, 12 S. Bandery St., Lviv, 79013, Ukraine oleksandr.o.kuzyk@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.03.393
AttachmentSize
PDF icon full_text.pdf432.21 KB
Abstract: 
The process of mass transfer during the dissolution of boric acid spheres in water was investigated in the temperature range from 293 K to 323 K, and at stirring rotation rates from 1.67 to 6.67 s-1. The study aimed to determine the dependence of the dissolution rate on the stirring rotation rate and water temperature. The analysis of the experimentally obtained results revealed that the most significant factor affecting the intensification of the dissolution process is an increase in the solution temperature. The phenomena of external and internal diffusion during the dissolution of boric acid spheres in water under agitation were also examined. To evaluate the mass transfer process, a generalized criterion equation was used that takes into account all the factors under study. Comparison of experimental and theoretically calculated values showed that the maximum absolute relative error does not exceed 6%. The results obtained are valuable for further research and potential applications in the chemical industry, pharmacology, and cosmetology.
References: 

[1] Chong, G.; Pueyo, J.; Demergasso C. The Borate Deposits in Chile. Revista Geológica de Chile 2000, 27, 99-119. http://www.andeangeology.cl/index.php/revista1/article/view/V27n1-a07
https://doi.org/10.4067/S0716-02082000000100007

[2] Symak, D.; Atamaniuk, V.; Gumnitsky, Ya. Analysis of Dissolution Kinetics Based on the Local Isotropic Turbulence Theory. Chem. Chem. Technol. 2015, 9, 493-497. https://doi.org/10.23939/chcht09.04.493
https://doi.org/10.23939/chcht09.04.493

[3] Sabadash, V.; Mylanyk, O.; Matsuska, O.; Gumnitsky, J. Kinetic Regularities of Copper Ions Adsorption by Natural Zeolite. Chem. Chem. Technol. 2017, 11, 459-462. https://doi.org/10.23939/chcht11.04.459
https://doi.org/10.23939/chcht11.04.459

[4] Frikha, N.; Hmercha, A.; Gabsi, S. Modelling of a Solid Dissolution in Liquid with Chemical Reaction: Application to the Attack Reaction of Phosphate by Sulphuric Acid. Can. J. Chem. Eng. 2014, 92, 1829-1838. https://doi.org/10.1002/cjce.21986
https://doi.org/10.1002/cjce.21986

[5] Mena, P.; Ferreira, A.; Teixeira, J.A.; Rocha, F. Effect of Some Solid Properties on Gas-Liquid Mass Transfer in a Bubble Column. Chem. Eng. Process.: Process Intensif. 2011, 50, 181-188. https://doi.org/10.1016/j.cep.2010.12.013
https://doi.org/10.1016/j.cep.2010.12.013

[6] Gumnitsky, Ya.M.; Symak, D.M.; Nagursky, O.A. Rozchynennia tverdykh til u tryfaznii systemi, utvorenii vakuumuvanniam. Scientific Works 2015, 47, 130-133. https://journals.ontu.edu.ua/index.php/swonaft/article/view/368

[7] Symak, D.M.; Luta, O.V. Nestatsionarnyi protses rozchynennia sharu zernystoho materialu. Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia 2015, 812, 308-312.

[8] Inglezakis, V.J.; Balsamo, M.; Montagnaro, F. Liquid−Solid Mass Transfer in Adsorption Systems an Overlooked Resistance? Ind. Eng. Chem. Res. 2020, 59, 22007−22016. https://doi.org/10.1021/acs.iecr.0c05032
https://doi.org/10.1021/acs.iecr.0c05032

[9] Tokura, V.Y.; Uddin Md.A.; Kato, Y. Effect of Suspension Pattern of Sedimentary Particles on Solid/Liquid Mass Transfer in a Mechanically Stirred. Ind. Eng. Chem. Res. 2019, 58, 10172−10178. https://doi.org/10.1021/acs.iecr.9b00594
https://doi.org/10.1021/acs.iecr.9b00594

[10] Crapse, K.; Kyser, E. Literature Review of Boric Acid Solubility Data. United States: N. p., 2011. https://doi.org/10.2172/1025802
https://doi.org/10.2172/1025802

[11] Carletti, C.; Bikić, S.; Montante, G.; Paglianti, A. Mass Transfer in Dilute Solid-Liquid Stirred Tanks. Ind. Eng. Chem. Res. 2018, 57, 6505-6515. https://doi.org/10.1021/acs.iecr.7b04730
https://doi.org/10.1021/acs.iecr.7b04730

[12] Joshi, S.S.; Dalvi, V.H.; Vitankar, V.S.; Joshi, A.J.; Joshi, J.B. Novel Correlation for the Solid-Liquid Mass Transfer Coefficient in Stirred Tanks Developed by Interpreting Machine Learning Models Trained on Literature Data. Ind. Eng. Chem. Res. 2023, 62, 19920-19935. https://doi.org/10.1021/acs.iecr.3c02442
https://doi.org/10.1021/acs.iecr.3c02442

[13] Atamaniuk, V.M.; Gumnitsky, Ya.M. Naukovi Osnovy Filtratsiinoho Sushinnia Dyspersnykh Materialiv; Lviv Polytechnic Publishing House: Lviv, 2013.

[14] Miyabe, K.; Isogai, R. Estimation of Molecular Diffusivity in Liquid Phase Systems by the Wilke-Chang Equation. J. Chromatogr. A 2011, 1218, 6639-6645. https://doi.org/10.1016/j.chroma.2011.07.018
https://doi.org/10.1016/j.chroma.2011.07.018