Kovar Tube as a Potential Catalyst for Conversion of Tar Produced from Biomass Gasification

Salah H. Aljbour1, Katsuya Kawamoto2, Tomohiko Tagawa3, Hiroshi Yamada4
1Chemical Engineering Department, Mutah University, 61710 Al-Karak, Jordan 2School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Okayama, 700-8530, Japan 3National Institute of Technology, Toyota College, Eisei-cho 2-1, Toyota-shi, 471-8525, Japan 4Chemical Systems Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, 464-8603, Japan saljbour@yahoo.com
PDF icon full_text.pdf468.4 KB
A pre-oxidized Kovar tube was employed as a reforming catalyst for the conversion of naphthalene. Under dry reforming condition, 24.7% naphthalene conversion could be achieved, whereas 36.6 and 42.3 % naphthalene conversion could be achieved when steam was added to the producer gas at the volume ratio of 0.06 and 0.11, respectively. Increasing the reforming temperature to 1173 K enhanced the catalytic removal of naphthalene to 91.5%. The activation energy and frequency factor values were found to be 136 kJ/mol and 3.07107 cm3cm-2min-1, respectively.

[1] Nyakuma, B.; Oladokun, O. Biofuel Characterization and Pyrolysis Kinetics of Acacia Mangium. Chem. Chem. Technol. 2017, 11 (3), 392-396. https://doi.org/10.23939/chcht11.03.392
[2] Nyakuma, B.; Oladokun, O.; Dodo, Y.; Wong, S.; Uthman, H.; Halim, M. Fuel Characterization and Thermogravimetric Analysis of Melon (Citrullus Colocynthis L.) Seed Husk. Chem. Chem. Technol. 2016, 10 (4), 493-498. https://doi.org/10.23939/chcht10.04.493
[3] Situmorang, Y.A.; Zhao, Z.; Yoshida, A.; Abudula, A.; Guan, G. Small-Scale Biomass Gasification Systems for Power Generation (< 200 kW Class): A Review. Renew. Sustain. Energy Rev. 2020, 117, 109486. https://doi.org/10.1016/j.rser.2019.109486
[4] Cao, L.; Yu, I.K.M.; Xiong, X.; Tsang, D.C.W.; Zhang, S.; Clark, J.H.; Hu, C.; Ng, Y.H.; Shang, J.; Ok, Y.S. Biorenewable Hydrogen Production through Biomass Gasification: A Review and Future Prospects. Environ. Res. 2020, 186, 109547. https://doi.org/10.1016/j.envres.2020.109547
[5] Nur, A.; Budiman, A.W.; Jumari, A.; Nazriati, N.; Fajaroh, F. Electrosynthesis of Ni-Co/Hydroxyapatite as a Catalyst for Hydrogen Generation via the Hydrolysis of Aqueous Sodium Borohydride (NaBH4) Solutions. Chem. Chem. Technol. 2021, 15 (3), 389-394. https://doi.org/10.23939/chcht15.03.389
[6] Aljbour, S.H.; Kawamoto, K. Bench-Scale Gasification of Cedar Wood –Part II: Effect of Operational Conditions on Contaminant Release. Chemosphere 2013, 90 (4), 1501-1507. https://doi.org/10.1016/j.chemosphere.2012.08.030
[7] Aljbour, S.H.; Kawamoto, K. Bench-Scale Gasification of Cedar Wood–Part I: Effect of Operational Conditions on Product Gas Characteristics. Chemosphere 2013, 90 (4), 1495-1500. https://doi.org/10.1016/j.chemosphere.2012.08.029
[8] Zhang, Z.; Liu, L.; Shen, B.; Wu, C. Preparation, Modification and Development of Ni-Based Catalysts for Catalytic Reforming of Tar Produced from Biomass Gasification. Renew. Sustain. Energy Rev. 2018, 94, 1086-1109. https://doi.org/10.1016/j.rser.2018.07.010
[9] Ramadhani, B.; Kivevele, T.; Kihedu, J.H.; Jande, Y.A. Catalytic Tar Conversion and the Prospective Use of Iron-Based Catalyst in the Future Development of Biomass Gasification: A Review. Biomass Convers. Biorefin. 2020, 12, 1-24. https://doi.org/10.1007/s13399-020-00814-x
[10] Tian, Y.; Zhou, X.; Lin, S.; Ji, X.; Bai, J.; Xu, M. Syngas Production from Air-Steam Gasification of Biomass with Natural Catalysts. Sci.Total Environ. 2018, 645, 518-523. https://doi.org/10.1016/j.scitotenv.2018.07.071
[11] Abu El-Rub, Z.; Bramer, E.A.; Brem, G. Review of catalysts for tar elimination in biomass gasification processes. Ind. Eng. Chem. Res. 2004, 43 (22), 6911-6919. https://doi.org/10.1021/ie0498403
[12] Yu, D.; Aihara, M.; Antal Jr, M.J. Hydrogen Production by Steam Reforming Glucose in Supercritical Water. Energy Fuels 1993, 7 (5), 574-577. https://doi.org/10.1021/ef00041a002
[13] Taylor, J.D.; Herdman, C.M.; Wu, B.C.; Wally, K.; Rice, S.F. Hydrogen Production in a Compact Supercritical Water Reformer. Int. J. Hydrog. Energy 2003, 28 (11), 1171-1178. https://doi.org/10.1016/S0360-3199(02)00291-4
[14] de la Rama, S.R.; Kawai, S.; Yamada, H.; Tagawa, T. Evaluation of Preoxidized SUS304 as a Catalyst for Hydrocarbon Reforming. Int. Sch. Res. Notices 2013, 289071. https://doi.org/10.1155/2013/289071
[15] Tagawa, T.; de la Rama, S.R.; Kawai, S.; Yamada, H. Partial Oxidation Catalysts Derived from Ni Containing Alloys for Biomass Gasification Process. Chem. Eng. Trans. 2013, 32, 583-588. https://doi.org/10.3303/CET1332098
[16] de la Rama, S.R.; Yamada, H.; Tagawa, T. Effects of Oxidation Pretreatment Temperature on Kovar Used as CO2 Reforming Catalyst. J. Fuel Chem. Technol. 2014, 42 (5), 573-581. https://doi.org/10.1016/S1872-5813(14)60027-X
[17] Jiwanuruk, T.; Yamada, H.; Tagawa, T.; Putivisutisak, S.; Assabumrungrat, S. Catalytic Activity of Oxidation Pretreated Hastelloy for Methanol Steam Reforming. Chem. Eng. Trans. 2017, 57, 961-966. https://doi.org/10.3303/CET1757161
[18] Brage, C.; Yu, Q.; Chen, G.; Sjöström, K. Use of Amino Phase Adsorbent for Biomass Tar Sampling and Separation. Fuel 1997, 76 (2), 137-142. https://doi.org/10.1016/S0016-2361(96)00199-8
[19] Luo, D.W.; Shen, Z.S. Oxidation Behavior of Kovar Alloy in Controlled Atmosphere. ACTA METALL SIN-ENGL 2008, 21 (6), 409-418. https://doi.org/10.1016/S1006-7191(09)60003-X
[20] Yates, P.M.; Mallinson, C.F.; Mallinson, P.M.; Whiting, M.J.; Yeomans, J.A. An Investigation into the Nature of the Oxide Layer Formed on Kovar (Fe–29Ni–17Co) Wires Following Oxidation in Air at 700 and 800 °C. Oxid. Met. 2017, 88 (5), 733-747. https://doi.org/10.1007/s11085-017-9772-y
[21] Jess, A. Mechanisms and Kinetics of Thermal Reactions of Aromatic Hydrocarbons from Pyrolysis of Solid Fuels.Fuel 1996, 75 (12), 1441-1448. https://doi.org/10.1016/0016-2361(96)00136-6
[22] Cheng, L.; Wu, Z.; Zhang, Z.; Guo, C.; Ellis, N.; Bi, X.; Watkinson, A.P.; Grace, J.R. Tar Elimination from Biomass Gasification Syngas with Bauxite Residue Derived Catalysts and Gasification Char. Appl. Energy 2020, 258, 114088. https://doi.org/10.1016/j.apenergy.2019.114088
[23] Buchireddy, P.R.; Bricka, R.M.; Rodriguez, J.; Holmes, W. Biomass Gasification: Catalytic Removal of Tars over Zeolites and Nickel Supported Zeolites. Energy Fuels 2010, 24 (4), 2707-2715. https://doi.org/10.1021/ef901529d
[24] Min, Z.; Asadullah, M.; Yimsiri, P.; Zhang, S.; Wu, H.; Li, C.-Z. Catalytic Reforming of Tar During Gasification. Part I. Steam Reforming of Biomass Tar Using Ilmenite as a Catalyst. Fuel 2011, 90 (5), 1847-1854. https://doi.org/10.1016/j.fuel.2010.12.039
[25] Di Carlo, A.; Borello, D.; Sisinni, M.; Savuto, E.; Venturini, P.; Bocci, E.; Kuramoto, K. Reforming of Tar Contained in a Raw Fuel Gas from Biomass Gasification Using Nickel-Mayenite Catalyst. Int. J. Hydrog. Energy 2015, 40 (30), 9088-9095. https://doi.org/10.1016/j.ijhydene.2015.05.128
[26] Aznar, M. P.; Caballero, M. A.; Gil, J.; Martin, J. A.; Corella, J. Commercial Steam Reforming Catalysts to Improve Biomass Gasification with Steam−Oxygen Mixtures. 2. Catalytic Tar Removal. Ind. Eng. Chem. Res. 1998, 37 (7), 2668-2680. https://doi.org/10.1021/ie9706727
[27] Delgado, J.; Aznar, M. P.; Corella, J. Biomass Gasification with Steam in Fluidized Bed: Effectiveness of CaO, MgO, and CaO−MgO for Hot Raw Gas Cleaning. Ind. Eng. Chem. Res. 1997, 36 (5), 1535-1543. https://doi.org/10.1021/ie960273w
[28] Narváez, I.; Corella, J.; Orio, A. Fresh Tar (From a Biomass Gasifier) Elimination over a Commercial Steam-Reforming Catalyst. Kinetics and Effect of Different Variables of Operation. Ind. Eng. Chem. Res. 1997, 36 (2), 317-327. https://doi.org/10.1021/ie960235c
[29] Abu El-Rub, Z.; Bramer, E.A.; Brem, G. Experimental Comparison of Biomass Chars with Other Catalysts for Tar Reduction. Fuel 2008,87 (10-11), 2243-2252. https://doi.org/10.1016/j.fuel.2008.01.004
[30] Devi, L.; Ptasinski, K.J.; Janssen, F.J.J.G. Pretreated Olivine as Tar Removal Catalyst for Biomass Gasifiers: Investigation Using Naphthalene as Model Biomass Tar. Fuel Process. Technol. 2005, 86 (6), 707-730. https://doi.org/10.1016/j.fuproc.2004.07.001
[31] Sun, Y.; Jiang, J.; Kantarelis, E.; Xu, J.; Li, L.; Zhao, S.; Yang, W. Development of a Bimetallic Dolomite Based Tar Cracking Catalyst. Catal. Commun. 2012, 20, 36-40. https://doi.org/10.1016/j.catcom.2011.12.040
[32] Fuentes-Cano, D.; Gómez-Barea, A.; Nilsson, S.; Ollero, P. Decomposition Kinetics of Model Tar Compounds over chars with Different Internal Structure to Model Hot Tar Removal in Biomass Gasification. Chem. Eng. J. 2013, 228, 1223-1233. https://doi.org/10.1016/j.cej.2013.03.130