Kinetics Models of Lignin Isolation from Rice Husk Using Alkaline Hydrogen Peroxide

Anwar Ma’ruf 1, 2, Bambang Pramudono2, Nita Aryanti 2
Affiliation: 
1 Universitas Muhammadiyah Purwokerto, Jawa Tengah 53182, Indonesia 2 Diponegoro University, Jawa Tengah 50239, Indonesia anwarump@yahoo.com
DOI: 
https://doi.org/10.23939/chcht13.02.224
AttachmentSize
PDF icon full_text.pdf294.4 KB
Abstract: 
This study explained the kinetics and mechanisms for the delignification and extraction of lignin from rice husk with alkaline hydrogen peroxide in water. The results showed that both the delignification and extraction models can be used to describe the kinetics of lignin isolation. Based on the SSE (sum squared error) values from the non-linear regressions, the delignification model fitted the experimental data better than the extraction model. The values of the activation energy were determined for the mass transfer control model, the reaction control model, and the extraction model.
References: 

[1] Tolbert A., Akinosho H., Khunsupat R. et al.: Biofuel. Bioprod. Bioref., 2014, 8, 836. https://doi.org/10.1002/bbb.1500
[2] Perez D., Curvelo A.: Open Agric. J., 2010, 4, 145.
[3] Fuertez J., Ruiz A., Alvarez H., Molina A.: Dyna, 2011, 78, 175.
[4] Wen J., Sun S., Yuan T. et al.: Bioresour. Technol., 2013, 150, 278. https://doi.org/10.1016/j.biortech.2013.10.015
[5] Tan S. et al.: Green Chem., 2009, 11,437. https://doi.org/10.1039/b905678p
[6] Li Z., Ge Y.: J. Braz. Chem. Soc., 2011, 10, 1866. https://doi.org/10.1590/S0103-50532011001000006
[7] Xin Q., Pfeiffer K., Prausnitz J. et al.: Biotechnol. Bioeng., 2012, 109, 346. https://doi.org/10.1002/bit.24337
[8] Cui J., Sun H., Wang X. et al.: Ind. Crops Prod., 2015, 74, 689. https://doi.org/10.1016/j.indcrop.2015.05.061
[9] Mohtar S. et al.: Bioresour. Technol., 2015, 192, 212. https://doi.org/10.1016/j.biortech.2015.05.029
[10] Watkins D., Nuruddin M., Hosur M. et al.: J. Mater. Res. Technol., 2015, 4, 26. https://doi.org/10.1016/j.jmrt.2014.10.009
[11] Shatalov A., Pereira H.: Ind. Crops Prod., 2005, 21, 203. https://doi.org/10.1016/j.indcrop.2004.04.010
[12] Guolin H., Chengfang Z., Zhongsheng C.: Chinese J. Chem. Eng., 2006, 14, 729. https://doi.org/10.1016/S1004-9541(07)60003-2
[13] Ho C., Wu K., Wang E., Su Y.: Ind. Eng. Chem. Res., 2011, 50, 3849. https://doi.org/10.1021/ie102184c
[14] Kim S., Holtzapple M.: Bioresour. Technol., 2006, 97, 778. https://doi.org/10.1016/j.biortech.2005.04.002
[15] Macfarlane A., Farid M., Chen J.: Chem. Eng. Process., 2009, 48, 864. https://doi.org/10.1016/j.cep.2008.11.005
[16] Huang G., Shi J., Langrish T.: Bioresour. Technol., 2007, 98, 1218. https://doi.org/10.1016/j.biortech.2006.05.002
[17] Cui M., Song W., Liu Z.: Adv. Mater. Res., 2014, 860/863, 1012.
[18] Song W., Deng Y., Xu Y.: J. Chem. Pharm. Res., 2015, 7, 527.
[19] Ma’ruf A., Pramudono B., Aryanti N.: AIP Conf. Proceed., 2017, 1823. https://doi.org/10.1063/1.4978086
[20] Dong L., Zhao X., Liu D.: RSC Adv., 2015, 5, 20992. https://doi.org/10.1039/C4RA14634D
[21] Epelde I., Lindgren C., Lindström M.: J. Wood Chem. Technol., 1998, 18, 69. https://doi.org/10.1080/02773819809350126
[22] Abdul-Karim L., Rab A., Polyanszky E., Rusznak I.: Tappi J., 1995, 78, 161.
[23] Amarante R., Oliveira P., Schwantes F., Morón-Villarreyes J.: Ind. Eng. Chem. Res., 2014, 16, 6824. https://doi.org/10.1021/ie500508n
[24] Dos Santos S., Martins M., Caneschi A. et al.: Int. J. Chem. Eng., 2015, 2015. https://doi.org/10.1155/2015/871236