Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly(ethylene glycol)

Nadiya Popadyuk1, Oksana Zholobko1, Volodymyr Donchak1, Khrystyna Harhay1, Olha Budishevska1, Andriy Voronov2, Ananiy Kohut1 and Stanislav Voronov1
Affiliation: 
1 Lviv Polytechnic National University 12, S. Bandery str., 79013 Lviv, Ukraine; stanislav.voronov@polynet.lviv.ua 2 North Dakota State University NDSU Dept. 2760, P.O. Box 6050; Fargo, North Dakota 58108-6050
DOI: 
https://doi.org/10.23939/chcht08.02.171
AttachmentSize
PDF icon full_text.pdf819.92 KB
Abstract: 
Self-assembled pH-sensitive reactive submicron-sized particles have been developed via intermolecular electrostatic interactions between chitosan and a carboxylated oligoperoxide having poly(ethylene glycol) fragments. The particles have the structure of an ionically crosslinked hydrogel and their size and surface charge depend on the conditions of their formation (i.e., pH and the functional group ratio). The presence of peroxide groups in the oligoperoxide has enabled to synthesize covalently crosslinked pH-sensitive particles.
References: 

[1] Sinha R., Kim G., Nie S. and Shin D.: Mol. Cancer Ther., 2006, 5, 1909.
https://doi.org/10.1158/1535-7163.MCT-06-0141

[2] Kizilay E., Kayitmazer A. and Dubin P.: Adv. Colloid Interface Sci., 2011, 167, 24.
https://doi.org/10.1016/j.cis.2011.06.006

[3] Muller M., Reihs T. and Ouyang W.: Langmuir, 2005, 21, 465.
https://doi.org/10.1021/la0483257

[4] Songa W., Hea Q., Mohwaldb H. et al.: J. Control. Release, 2009, 139, 160.
https://doi.org/10.1016/j.jconrel.2009.06.010

[5] Berger J., Reist M., Mayer J. et al.: Eur. J. Pharm. Biopharm., 2004, 57, 19.
https://doi.org/10.1016/S0939-6411(03)00161-9

[6] Willerich I., Schindler T. and Grohn F.: J. Phys. Chem. B, 2011, 115, 9710.
https://doi.org/10.1021/jp204368t

[7] Hajdu I., Bodnar M., Filipcsei G. et al.: Colloid Polym. Sci., 2008, 286, 343.
https://doi.org/10.1007/s00396-007-1785-7

[8] Keresztessy Z., Bodnar M., Ber E. et al.: Colloid Polym. Sci., 2009, 287, 759.
https://doi.org/10.1007/s00396-009-2022-3

[9] Liua W., Suna S., Caoa Z. et al.: Biomaterials, 2005, 26, 2705.
https://doi.org/10.1016/j.biomaterials.2004.07.038

[10] Du J., Dai J., Liu J.L. and Dankovich T.: React. Funct. Polym., 2006, 66, 1055.
https://doi.org/10.1016/j.reactfunctpolym.2006.01.014

[11] Muzzarelli R.: Chitosan [in:] Muzzarelli R. (Ed.), Natural Chelating Polymers. Pergamon Press, Oxford 1973, 144-176.

[13] Toroptseva A., Belgorodskaya K. and Bondarenko V.: Laboratornyy Praktikum po Khimii i Tekhnologii Vysokomolekulyarykh Soedineniy. Khimiya, Leningrad 1976.

[14] Wang W., Bo S., Li S. and Qin W.: Int. J. Biol. Macromol., 1991, 13, 281.
https://doi.org/10.1016/0141-8130(91)90027-R

[15] Bellamy L.: The Infra-Red Spectra of Complex Macromolecules. Chapman and Hall Ltd, London 1975.
https://doi.org/10.1007/978-94-011-6017-9

[16] Solomko N., Budishevska O., Voronov A., Kohut A. et al.: Macromol. Symp., 2010, 298, 77.
https://doi.org/10.1002/masy.201000051

[17] Sangamesh G., Kumaresh S. and Tejzaj M.: J. Appl. Polym. Sci., 2003, 87, 1525.
https://doi.org/10.1002/app.11552

[18] Jenkins D. and Hudson S.: Chem. Rev., 2001, 101, 3245.
https://doi.org/10.1021/cr000257f

[19] Curcio M., Puoci F., Iemma F. et al.: J. Agric. Food Chem., 2009, 57, 5933.
https://doi.org/10.1021/jf900778u

[20] Alves N. and Mano J.: Int. J. Biol. Macromol., 2008, 43, 401.
https://doi.org/10.1016/j.ijbiomac.2008.09.007

[21] Stetsyshyn Y., Donchak V., Harhay K., Voronov S. et al.: Polym. Int., 2009, 58, 1034.
https://doi.org/10.1002/pi.2628