Investigation of the Adsorption Properties of a New Composite Catalyst for the Fenton System
Attachment | Size |
---|---|
full_text.pdf | 78.5 KB |
[1] Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging Pollutants in the Environment: Present and Future Challenges in Biomonitoring, Ecological Risks and Bioremediation. New Biotechnology 2015, 32, 147–156. https://doi.org/10.1016/j.nbt.2014.01.001
[2] Gupta, V.K.; Pathania, D.; Agarwal, Sh.; Singh, P. Adsorptional Photocatalytic Degradation of Methylene Blue onto Pectin–CuS Nanocomposite under Solar Light. J. Hazard. Mater. 2012, 243, 179–186. https://doi.org/10.1016/j.jhazmat.2012.10.018
[3] Atalay, S.; Ersöz, G. Novel Catalysts in Advanced Oxidations of Organic Pollutants; Springer International Publishing, 2016.
[4] Miklos, D.B.; Remy, Ch.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment – A Critical Review. Water Res. 2018, 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042
[5] Sina, M.A.; Mohsen, M. Advances in Fenton and Fenton Based Oxidation Processes for Industrial Effluent Contaminants Control – A Review. Int. J. Environ. Sci. Nat. Res. 2017, 2, 115–132. https://doi.org/10.19080/IJESNR.2017.02.555594
[6] Aleksić, M.; Kušić, H.; Koprivanac, N.; Leszczynska, D.; Božić, A.L. Heterogeneous Fenton Type Processes for the Degradation of Organic Dye Pollutant in Water – The Application of Zeolite Assisted AOPs. Desalination 2010, 257, 22–29. https://doi.org/10.1016/j.desal.2010.03.016
[7] Yang, S.-T.; Zhang, W.; Xie, J.; Liao, R.; Zhang, X.; Yu, B.; Wu, R.; Liu, X.; Li, H.; Guo, Z. Fe3O4@SiO2 Nanoparticles as a High-Performance Fenton-like Catalyst in a Neutral Environment. RSC Adv. 2015, 5, 5458–5463. https://doi.org/10.1039/C4RA10207J
[8] Vu, A.-T.; Xuan, T.N.; Lee, C.-H. Preparation of Mesoporous Fe2O3•SiO2 Composite from Rice Husk as an Efficient Heterogeneous Fenton-like Catalyst for Degradation of Organic Dyes. J. Water Process Eng. 2019, 28, 169–180. https://doi.org/10.1016/j.jwpe.2019.01.019
[9] Makido, O.; Khovanets’, G.; Kochubei, V.; Yevchuk, I. Nanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application. Chem. Chem. Technol. 2022, 16, 227–236. https://doi.org/10.23939/chcht16.02.227
[10] Semeniuk, I.; Kochubei, V.; Skorokhoda, V.; Pokynbroda, T.; Midyana, H.; Karpenko, E.; Melnyk, V. Biosynthesis Products of Pseudomonas sp. PS-17 Strain Metabolites. 1. Obtaining and Thermal Characteristics. Chem. Chem. Technol. 2020, 14, 26–31. https://doi.org/10.23939/chcht14.01.026
[11] Pokynbroda, T.Ya.; Karpenko, І.V.; Midyana, H.H.; Kаrpenko, O.Ya. Isolation of Surfactants Synthesized by the Pseudomonas Bacteria and Study of Their Properties. Innov. Biosyst. Bioeng. 2019, 3, 70–76. https://doi.org/10.20535/ibb.2019.3.2.165838
[12] Kuksis, A. Chromatography of Lipids in Biomedical Research and Clinical Diagnosis, 1st ed.; Elsevier Science Publishing Company, Inc.: Amsterdam, 1987.
[13] Kuang, Y.; Zhang, X.; Zhou, Sh. Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water 2020, 12, 587–607. https://doi.org/10.3390/w12020587
[14] Etemadinia, T.; Allahrasani, A.; Barikbin, B. ZnFe2O4@SiO2@ Tragacanth Gum Nanocomposite: Synthesis and its Application for the Removal of Methylene Blue Dye from Aqueous Solution. Polym. Bull. 2019, 76, 6089–6109. https://doi.org/10.1007/s00289-019-02681-7