Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen
Attachment | Size |
---|---|
full_text.pdf | 304.96 KB |
[1] Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M. Understanding the bitumen ageing phenomenon: A review. Constr. Build. Mater. 2018, 192, 593-609. https://doi.org/10.1016/j.conbuildmat.2018.10.169
https://doi.org/10.1016/j.conbuildmat.2018.10.169
[2] Cong, P.; Wang, J.; Li, K.; Chen, S. Physical and rheological properties of asphalt binders containing various antiaging agents. Fuel 2012, 97, 678-684. https://doi.org/10.1016/j.fuel.2012.02.028
https://doi.org/10.1016/j.fuel.2012.02.028
[3] Apeagyei, A. Laboratory evaluation of antioxidants for asphalt binders. Constr. Build. Mater. 2011, 25, 47-53. https://doi.org/10.1016/j.conbuildmat.2010.06.058
https://doi.org/10.1016/j.conbuildmat.2010.06.058
[4] Isacsson, U.; Zeng, H. Relationships between bitumen chemistry and low temperature behaviour of asphalt. Constr. Build. Mater. 1997, 11, 83-91. https://doi.org/10.1016/S0950-0618(97)00008-1
https://doi.org/10.1016/S0950-0618(97)00008-1
[5] Ghavibazoo, A.; Abdelrahman, M.; Ragab, M. Evaluation of oxidization of crumb rubber-modified asphalt during short-term aging. J. Transp. Res. Board 2015, 2505, 84-91.
https://doi.org/10.3141/2505-11
[6] Cortés, C.; Pérez-Lepe, A.; Fermoso, J.; Costa, A.; Guisado, F.; Esquena, J.; Potti, J. Envejecimiento foto-oxidativo de betunes asfálticos. Jornada Nacional ASEFMA. 2010, V, 227-238.
[7] Ouyang, C.; Wang, S.; Zhang, Y. Improving the aging resistance of styrene-butadiene-styrene tri-block copolymer modified asphalt by addition of antioxidants. J. Appl. Polym. Sci. 2006, 91, 795-804. https://doi.org/10.1016/j.polymdegradstab.2005.06.009
https://doi.org/10.1016/j.polymdegradstab.2005.06.009
[8] Banerjee, A.; Smit, A.; Prozzi, J. The effect of long-term aging on the rheology of warm mix asphalt binders. Fuel 2012, 97, 603-611. https://doi.org/10.1016/j.fuel.2012.01.072
https://doi.org/10.1016/j.fuel.2012.01.072
[9] Dessouky, S.; Contreras, D.; Sánchez, J.; Park, D. Anti-oxidants' effect on bitumen rheology and mixes' mechanical performance. Innovative Mater. Des. Sustainable Transp. Infrast. 2015, 8-18.
https://doi.org/10.1061/9780784479278.002
[10] Martin, K. Laboratory evaluation of antioxidants for bitumen. Proc. Aust. Road Res. Board 1968, 2, 431.
[11] Dessouky, S.; Ilias, M.; Park, D.; Kim, I. Influence of antioxi-dant-enhanced polymers in bitumen rheology and bituminous con-crete mixtures mechanical performance. Adv. Mater. Sci. Eng. 2015, 1-9. https://doi.org/10.1155/2015/214585
https://doi.org/10.1155/2015/214585
[12] Petersen, J. A Review of the Fundamentals of Asphalt Oxida-tion: Chemical, Physicochemical, Physical Property, and Durability Relationships explores the current physicochemical understanding of the chemistry, kinetics, and mechanisms of asphalt oxidation and its influence on asphalt durability. Transportation Research Circu-lar 2009, E-C140, 1-78. https://onlinepubs.trb.org/onlinepubs/circulars/ec140.pdf
[13] Hadi Nahi, M.; Kamaruddin, I.; Napiah, M. The Utilization of Rice Husks powder as an Antioxidant in Asphalt Binder. Appl. Mech. Mater. 2014, 567, 539-544. https://doi.org/10.4028/www.scientific.net/AMM.567.539
https://doi.org/10.4028/www.scientific.net/AMM.567.539
[14] Cavalcante, L.; Soares, S.; Soares, J. Characterization and thermal behavior of polymer-modified asphalt. Mater. Res. 2004, 7, 529-534. https://doi.org/10.1590/S1516-14392004000400004
https://doi.org/10.1590/S1516-14392004000400004
[15] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
https://doi.org/10.23939/chcht15.04.608
[16] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
https://doi.org/10.23939/chcht16.01.142
[17] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461
https://doi.org/10.23939/chcht16.03.461
[18] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of phenol-cresol-formaldehyde resin on adhesive and physi-co-mechanical properties of road bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456
https://doi.org/10.23939/chcht12.04.456
[19] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry surfacing mixes on the basis of bitumen modified with phenol-cresol-formaldehyde resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
https://doi.org/10.23939/chcht14.02.251
[20] Rossi, C.; Caputo, P.; Ashimova, S.; Fabozzi, A.; D'Errico, G.; Angelico, R. Effects of Natural Antioxidant Agents on the Bitumen Aging Process: An EPR and Rheological Investigation. Appl. Sci. 2018, 8, 1-13. https://doi.org/10.3390/app8081405
https://doi.org/10.3390/app8081405
[21] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of petroleum bitumen resistance to aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
https://doi.org/10.23939/chcht15.03.438
[22] Donchenko, M.; Grynyshyn, O. Investigation of resistance of modified bitumens to technological aging. Chemistry, technology and application of substances 2022, 5, 56-60. https://doi.org/10.23939/ctas2022.01.056
https://doi.org/10.23939/ctas2022.01.056
[23] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of humic acids from low-grade metamorphism coal for the modification of biofilms based on polyvinyl alcohol. Pet. Coal. 2021, 63, 953-962.
[24] EN 1427:2015, Bitumen and bituminous binders. Determina-tion of the softening point. Ring and Ball method, 2015.
[25] EN 1426:2015, Bitumen and bituminous binders. Determina-tion of needle penetration, 2015.
[26] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of phenol-cresol-formaldehyde resin as an adhesion promoter for bitumen and asphalt concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918.
https://doi.org/10.1080/14680629.2020.1808518
[27] EN 12607-1:2014, Bitumen and bituminous binders. Determi-nation of the resistance to hardening under influence of heat and air RTFOT method, 2014.