Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

The Influence of Organic and Inorganic Additives on the Specific Electrical Resistance of Coke

Denis Miroshnichenko1, Oleksandr Borisenko2, Valentine Koval3, Oleh Zelenskii4, Yevhen Soloviov1, Serhiy Pyshyev5
Affiliation: 
1 Department of Oil, Gas and Solid Fuel Technologies National Technical University Kharkiv Polytechnic Institute, Kharkiv, Ukraine 2 State Enterprise "Ukrainian State Research Institute for Carbochemistry (UKHIN), management department Kharkiv, Ukraine 3 State Enterprise "Ukrainian State Research Institute for Carbochemistry (UKHIN), coal department Kharkiv, Ukraine 4 State Enterprise "Ukrainian State Research Institute for Carbochemistry (UKHIN), coke department 5 Lviv Polytechnic National University 12, S.Bandery St., 79013 Lviv, Ukraine dvmir79@gmail.com
DOI: 
https://doi.org/10.23939/chcht18.01.109
AttachmentSize
PDF icon full_text.pdf390.74 KB
Abstract: 
This study aimed to evaluate the effect of both inorganic (boron carbide nanopowders and silicon carbide (carborundum) and organic lean (petroleum coke) additives on the quality of coke produced in a laboratory furnace, as well as on its electrical properties. Analyzing the results of the quality assessment of the obtained coke, it can be argued that the addition of a fixed amount (0.25-0.5 wt.%) of non-caking nanoadditives allows to regulate the process in the plastic state in order to increase the coke strength. This modification affects the coke quality and has a significant dependence on the grade composition of the coal charge. The use of nanoadditives is especially important for coal charges with poor coking properties. Adding 5% of petroleum coke to the coal charge leads to an increase in the gross coke yield by 1.2-1.3%; a decrease in coke ash content by 0.2-0.3%; an increase in the total sulfur content in coke by 0.15-0.23%; deterioration in both mechanical (P25 − by 0. 1-0.6%; I10 − by 0.1-0.2%) and coke strength after the reaction (CSR - by 0.6-1.0%), coke reactivity (CRI - by 0.2-0.3%), as well as structural strength (SS by 0.3-0.4%), abrasive hardness (AH by 0.7-1.0 mg) and specific electrical resistance (ρ by 0.002-0.007 Om×cm). The obtained data may indicate an increase in the order degree of the coke structure and the appearance of a larger number of nanostructures. In addition, it should be noted that a sharper deterioration in blast furnace coke quality is observed when using a coal charge characterized by a lower coal content of the Concentrating Factory Svyato-Varvarynska LLC.
References: 

[1] Sakurovs, R.; Koval, L.; Grigor M.; Sokolova, A.; de Campo, L.; Rehm, K. Nanostructure of Cokes. Int J Coal Geol 2018, 188, 112-120. http://dx.doi.org/10.1016/j.coal.2018.02.006
https://doi.org/10.1016/j.coal.2018.02.006

[2] Sakurovs, R.; Grigor, M.; Sokolova, A.; Mata, Ya. Effect of High Temperature on Nanopores in Coke. Fuel 2023, 334, 126821. https://doi.org/10.1016/j.fuel.2022.126821
https://doi.org/10.1016/j.fuel.2022.126821

[3] Suarez-Ruiz, I.; Crelling, J.C. Coal-Derived Carbon Materials. In Applied Coal Petrology. The Role of Petrology in Coal Utiliztion; Suarez-Ruiz, I.; Crelling, J.C., Eds.; Burlington, 2008; pр 193-225. https://doi.org/10.1016/B978-0-08-045051-3.X0001-2
https://doi.org/10.1016/B978-0-08-045051-3.X0001-2

[4] Zhu, H.-b.; Zhan, W.-l.; He, Z.-j.; Yu, Y.-c; Pang, Q.-h; Zhang, J.-h. Pore Structure Evolution During the Coke Graphitization Process in a Blast Furnace. Int. J. Miner. Metall. Mater. 2020, 27, 1226-1233. https://doi.org/10.1007/s12613-019-1927-1
https://doi.org/10.1007/s12613-019-1927-1

[5] Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Diez, M.A.; Borrego, A.G.; Osório, E.; Vilela, A.C.F. Effect of Charcoal Blending with a Vitrinite Rich Coking Coal on Coke Reactivity. Fuel Process. Technol. 2017, 155, 97-105. https://doi.org/10.1016/j.fuproc.2016.04.012
https://doi.org/10.1016/j.fuproc.2016.04.012

[6] Zhang, H.; Bai, J.; Li, W.; Cheng, F. Comprehensive Evaluation of Inherent Mineral Composition and Carbon Structure Parameters on CO2 Reactivity of Metallurgical Coke. Fuel 2019, 235, 647-657. https://doi.org/10.1016/j.fuel.2018.07.131
https://doi.org/10.1016/j.fuel.2018.07.131

[7] Malaquias, B.; Flores, V.I.; Bagatini, M. Effect of High Petroleum Coke Additions on Metallurgical Coke Quality and Optical Texture. REM - International Engineering Journal 2020, 73. https://doi.org/10.1590/0370-44672019730097
https://doi.org/10.1590/0370-44672019730097

[8] Larionov, K.; Mishakov, I.; Slyusarskiy, K.; Vedyagin, A.A. Intensification of Bituminous Coal and Lignite Oxidation by Copper-Based Activating Additives. Int J Coal Sci Technol. 2021, 8, 141-153. https://doi.org/10.1007/s40789-020-00350-z
https://doi.org/10.1007/s40789-020-00350-z

[9] Shmeltser, E.O.; Lyalyuk, V.P.; Sokolova, V.P.; Miroshnichenko, D.V. The Using of Coal Blends with an Increased Content of Coals of the Middle Stage of Metamorphism for the Production of the Blast-Furnace Coke. Мessage 1. Рreparation of Coal Blends. Pet. Coal 2018, 60, 605-611.

[10] Gunka, V.; Shved, M.; Prysiazhnyi, Y.; Pyshyev, S.; Miroshnichenko, D. Lignite Oxidative Desulphurization: Notice 3-Process Technological Aspects and Application of Products. Int J Coal Sci Technol. 2019, 6, 63-73. https://doi.org/10.1007/s40789-018-0228-z
https://doi.org/10.1007/s40789-018-0228-z

[11] Shved, M.; Pyshyev, S.; Prysiazhnyi, Y. Effect of Oxidant Relative Flow Rate on Obtaining Raw Material for Pulverized Coal Production from High-Sulfuric Row Grade Coal. Chem. Chem. Technol. 2017, 11, 236-241. https://doi.org/10.23939/chcht11.02.236
https://doi.org/10.23939/chcht11.02.236

[12] Zelenskii, O.I. Modern Trends in the Use of Nonmetallurgical Additives in the Coke Production. J. Coal Chem. 2023, 3, 21-28.

[13] Nag, D.; Karmakar, Sh.; Burgula, L.; Dash, J.; Dash P.S.; Ghorai S. Use of Organic Polymers for Improvement of Coking Potential of Poorcoking Coal. Int. J. Coal Prep. Util. 2020, 40, 427-437. https://doi.org/10.1080/19392699.2019.1686365
https://doi.org/10.1080/19392699.2019.1686365

[14] Zelenskii, O.; Vasil'ev, Y.; Sytnik, A.; Desna, N.; Spirina, E.; Grigorov, A. Metallurgical Cokemaking with the Improved Physicochemical Parameters at Avdeevka Coke Plant. Chem. J. Mold. 2018, 13, 32-37. https://doi.org/10.19261/cjm.2018.516
https://doi.org/10.19261/cjm.2018.516

[15] Wu, Q.; Sun, C.; Zhu, Z.-Z.; Wang, Y.-D.; Zhang, C.-Y. Effects of Boron Carbide on Coking Behavior and Chemical Structure of High Volatile Coking Coal during Carbonization. Materials 2021, 14, 302. https://doi.org/10.3390/ma14020302
https://doi.org/10.3390/ma14020302

[16] Kumar, A.; Kaur, M.; Kumar, R.; Sengupta, P.R.; Raman V.; Bhatia, G. Effect of Incorporating Nano Silicon Carbide on the Properties of Green Coke Based Monolithic Carbon. Indian J. Eng. Mater. Sci. 2010, 17, 353-357.

[17] Jayakumari, S.; Tangstad, M. Transformation of β-SiC from Charcoal, Coal, and Petroleum Coke to α-SiC at Higher Temperatures. Metall Mater Trans B 2020, 51, 2673-2688. https://doi.org/10.1007/s11663-020-01970-1
https://doi.org/10.1007/s11663-020-01970-1

[18] Tomas, Р.; Manoj, B. Dielectric Performance of Graphene Nanostructures Prepared from Naturally Sourced Material. Mater. Today: Proc. 2021, 43, 3424-3427. https://doi.org/10.1016/j.matpr.2020.09.075
https://doi.org/10.1016/j.matpr.2020.09.075

[19] Miroshnichenko, D.V.; Saienko, L.; Demidov, D.; Pyshyev, S.V. Predicting the Yield of Coke and its Byproducts on the Basis of Ultimate and Petrographic Analysis. Pet. Coal 2018, 60, 402-415.

[20] Miroshnichenko, D.V.; Saienko, N.; Popov, Y.; Demidov, D.; Nikolaichuk, Y.V. Preparation of Oxidized Coal. Pet. Coal 2018, 60, 113-119.

[21] Barsky, V.; Vlasov, G.; Rudnitsky, A. Composition and Structure of Coal Organic Mass. 3. Dinamics of Coal Chemical Structure During Metamorphism. Chem. Chem. Technol. 2011, 5, 285-290. https://doi.org/10.23939/chcht05.03.285
https://doi.org/10.23939/chcht05.03.285

[22] Pyshyev, S.; Zbykovskyy, Y.; Shvets, I.; Miroshnichenko, D.; Kravchenko, S.; Stelmachenko, S.; Demchuk, Y.; Vytrykush N. Modeling of Coke Distribution in a Dry Quenching Zon. ACS Omega. 2023, 8, 19464-19473. https://doi:10.1021/acsomega.3c00747
https://doi.org/10.1021/acsomega.3c00747

[23] Pyshyev, S.; Prysiazhnyi, Y.; Miroshnichenko, D.; Bilushchak, H.; Pyshyeva, R. Desulphurization and Usage of Medium-Metamorphized Black Coal. 1. Determination of the Optimal Conditions for Oxidative Desulphurization. Chem. Chem. Technol. 2014, 8, 225-234. https://doi.org/10.23939/chcht08.02.225
https://doi.org/10.23939/chcht08.02.225

[24] Flores, B.D.; Flores, I.V.; Guerrero, A.; Orellana, D.R.; Pohlmann, J.G.; Díez, M.A.; Borrego, A.G.; Osório, E.; Vilela, A.C.F. On the Reduction Behavior, Structural and Mechanical Features of Iron Ore-Carbon Briquettes. Fuel Process. Technol. 2017, 155, 238-245. https://doi.org/10.1016/j.fuproc.2016.07.004
https://doi.org/10.1016/j.fuproc.2016.07.004