Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites

Nora Ouis1,2, Assia Belarbi2, Salima Mesli3, Nassira Benharrats2
Affiliation: 
1 Unité de Chimie, Faculté de Médecine, Université 1 Oran, BP 1510 Al M’naouer Oran 31000 Algérie. 2 L.P.P.M.C.A. Université des Sciences et de la Technologie, M. Boudiaf BP 1505 Al M’naouer Oran31000 Algérie. 3 Laboratoire de Chimie des matériaux, BP 1524 Oran El Mnaouer, Algérie. nora_ouis@yahoo.fr
DOI: 
https://doi.org/10.23939/chcht17.01.118
AttachmentSize
PDF icon full_text.pdf1.27 MB
Abstract: 
A new nanocomposite based on conducting polyaniline (PANI) and Algerian montmorillonite clay dubbed Maghnite is proposed to combine conducting and thermal properties (Mag). The PANI-Mag nanocompo-sites samples were made by in situ polymerization with CTABr (cetyl trimethyl ammonium bromide) as the clay galleries' organomodifier. In terms of the PANI-Mag ratio, the electrical and thermal properties of the obtained nanocomposites are investigated. As the amount of Maghnite in the nanocomposite increases, thermal stability improves noticeably, as measured by thermal gravimetric analysis. The electric conductivity of nanocomposites is lower than that of free PANI. As the device is loaded with 5 % clay, the conductivity begins to percolate and decreases by many orders of magnitude. The findings show that the conductivity of nanocomposites is largely independent of clay loading and dispersion.
References: 

[1] Gonzalez, L.; Lafleur, P.; Lozano, T.; Morales, A.B.; Garcia, R.; Angeles, M.; Rodriguez, F.; Sanchez, S. Mechanical and Thermal Properties of Polypropylene/Montmorillonite Nanocomposites Using Stearic Acid as Both an Interface and a Clay Surface Modifi-er. Polym. Compos. 2014, 35, 1-9. https://doi.org/10.1002/pc.22627
https://doi.org/10.1002/pc.22627

[2] Valandro, S.R.; Lombardo, P.C.; Poli, A.L.; Horn Jr., M.A.; Neumann, M.G.; Cavalheiro, C.C.S. Thermal Properties of Poly (Methyl Methacrylate)/Organomodified Montmorillonite

Nanocomposites Obtained by in situ Photopolymerization. Mater. Res. 2014, 17, 265-270. https://doi.org/10.1590/S1516-14392013005000173
https://doi.org/10.1590/S1516-14392013005000173

[3] Dhatarwal, P.; Sengwa, R.J.; Choudhary S. Effect of Intercalated and Exfoliated Montmorillonite Clay on the Structural, Dielectric and Electrical Properties of Plasticized Nanocomposite Solid

Polymer Electrolytes. Compos. Commun. 2017, 5, 1-7. https://doi.org/10.1016/j.coco.2017.05.001
https://doi.org/10.1016/j.coco.2017.05.001

[4] Cui, Y.; Kumar, S.; Kona, B.R.; van Houcke, D. Gas Barrier Properties of Polymer/Clay Nanocomposites. RSC Adv. 2015, 5, 63669-63690. https://dx.doi.org/10.1039/c5ra10333a
https://doi.org/10.1039/C5RA10333A

[5] MacDiarmid, A.G. Nobel Lecture: "Synthetic Metals": A Novel Role for Organic Polymers. Rev. Mod. Phys. 2001, 73, 701-712. https://doi.org/10.1103/RevModPhys.73.701
https://doi.org/10.1103/RevModPhys.73.701

[6] Belbachir, M.; Bensaoula, A. Composition and Method for Catalysis Using Bentonite. US 7, 094, 823 B2, January 1, 2006.

[7] Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. A New Green Catalyst for Synthesis of bis-Macromonomers of Polyethylene Glycol (PEG). Chem. Chem. Technol. 2020, 14, 468-473. https://doi.org/10.23939/chcht14.04.468
https://doi.org/10.23939/chcht14.04.468

[8] Zhu, J.; He, H.; Zhu, L.; Wen, X.; Deng, F. Characterization of Organic Phases in the Interlayer of Montmorillonite Using FTIR and 13C NMR. J. Colloid Interface Sci. 2005, 286, 239-244. https://doi.org/10.1016/j.jcis.2004.12.048
https://doi.org/10.1016/j.jcis.2004.12.048

[9] Zhu, L.; Zhu, R.; Xu, L.; Ruan, X. Influence of Clay Charge Densities and Surfactant Loading Amount on the Microstructure of CTMA-Montmorillonite Hybrids. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 304, 41-48. https://doi.org/10.1016/j.colsurfa.2007.04.019
https://doi.org/10.1016/j.colsurfa.2007.04.019

[10] Caillere, S.; Henin, S.; Rautureau, M. Minéralogie des argiles; Masson: Paris, 1982.

[11] Tang, J.; Jing, X.; Wang, B.; Wang, F. Infrared Spectra of Soluble Polyaniline. Synth. Met. 1988, 24, 231-238. https://doi.org/10.1016/0379-6779(88)90261-5
https://doi.org/10.1016/0379-6779(88)90261-5

[12] Ghosh, M.; Meikap, A.K.; Chattopadhyay, S.K.; Chatterjee, S. Low Temperature Transport Properties of Cl-Doped Conducting Polyaniline. J. Phys. Chem. Solids 2001, 62, 475-484. https://doi.org/10.1016/S0022-3697(00)00189-X
https://doi.org/10.1016/S0022-3697(00)00189-X

[13] Yan, H.; Toshima, N. Chemical Preparation of Polyaniline and its Derivatives by Using Cerium(IV) Sulfate. Synth. Met. 1995, 69, 151-152. https://doi.org/10.1016/0379-6779(94)02398-I
https://doi.org/10.1016/0379-6779(94)02398-I

[14] Rout, T.K.; Jha, G.; Singh, A.K.; Bandyopadhyay, N.;

Mohanty, O.N. Development of Conducting Polyaniline Coating: A Novel Approach to Superior Corrosion Resistance. Surf. Coat. Technol. 2003, 167, 16-24. https://doi.org/10.1016/S0257-8972(02)00862-9
https://doi.org/10.1016/S0257-8972(02)00862-9

[15] Ruckenstein, E.; Yang, S. An Emulsion Pathway to Electrically Conductive Polyaniline-Polystyrene Composites. Synth. Met. 1993, 53, 283-292. https://doi.org/10.1016/0379-6779(93)91097-L
https://doi.org/10.1016/0379-6779(93)91097-L

[16] Khiew, P.S.; Huang, N.M.; Radiman, S.; Ahmad, Md.S. Synthesis and Characterization of Conducting Polyaniline-Coated

Cadmium Sulphide Nanocomposites in Reverse Microemulsion. Mater. Lett. 2004, 58, 516-521. https://doi.org/10.1016/S0167-577X(03)00537-8
https://doi.org/10.1016/S0167-577X(03)00537-8

[17] Li, Q.; Cruz, L.; Philips, P. Granular-Rod Model for Electronic Conduction in Polyaniline. Phys. Rev. B 1993, 47, 1840-1845. https://doi.org/10.1103/PhysRevB.47.1840
https://doi.org/10.1103/PhysRevB.47.1840

[18] Pouget, J.P.; Hsu, C.-H.; MacDiarmid, A.G.; Epstein, A.J. Structural Investigation of Metallic PAN-CSA and Some of its Derivatives. Synth. Met. 1995, 69, 119-120. https://doi.org/10.1016/0379-6779(94)02382-9
https://doi.org/10.1016/0379-6779(94)02382-9

[19] Pouget, J.P.; Jozefowicz, M.E.; Epstein, A.J.; Tang, X.; Mac-Diarmid, A.G. X-Ray Structure of Polyaniline. Macromolecules 1991, 24, 779-789. https://doi.org/10.1021/ma00003a022
https://doi.org/10.1021/ma00003a022

[20] Chan, H.S.O.; Ng, S.C.; Sim, W.S.; Seow, S.H.; Tan, K.L.; Tan, B.T.G. Synthesis and Characterization of Conducting poly(o-Aminobenzyl Alcohol) and its Copolymers with Aniline.

Macromolecules 1993, 26, 144-150. https://doi.org/10.1021/ma00053a022
https://doi.org/10.1021/ma00053a022

[21] Tsocheva, D.; ZIatkov, T.; Terlemezyan, L. Thermoanalytical Studies of Polyaniline 'Emeraldine base'. J. Therm. Anal. Calorim. 1998, 53, 895-904. https://doi.org/10.1023/A:1010146619792
https://doi.org/10.1023/A:1010146619792

[22] Ghosh, P.; Chakrabarti, A.; Siddhanta, S.K. Studies on Stable Aqueous Polyaniline Prepared with the Use of Polyacrylamide as the Water Soluble Support Polymer. Eur. Polym. J. 1999, 35,
https://doi.org/10.1016/S0014-3057(98)00065-2

803-813. https://doi.org/10.1016/S0014-3057(98)00065-2
https://doi.org/10.1016/S0014-3057(98)00065-2

[23] Schemid, A.L.; Córdoba de Torresi, S.I.; Bassetto, A.N.;

Carlos, I.A. Structural, Morphological and Spectroelectrochemical Characterization of poly (2-Ethyl Aniline). J. Braz. Chem. Soc. 2000, 11, 317-323. https://doi.org/10.1590/S0103-50532000000300020
https://doi.org/10.1590/S0103-50532000000300020

[24] Yoshimoto, S.; Ohashi, F.; Ohnishi, Y.; Nonami, T. Synthesis of Polyaniline-Montmorillonite Nanocomposites by the Mechano-chemical Intercalation Method. Synth. Met. 2004, 145, 265-270. https://doi.org/10.1016/j.synthmet.2004.05.011
https://doi.org/10.1016/j.synthmet.2004.05.011

[25] Chan, H.S.O.; Teo, M.Y.B.; Khor, E., Lim, C.N. Thermal Analysis of Conducting Polymers Part I. Journal of Thermal

Analysis 1989, 35, 765-774. https://doi.org/10.1007/BF02057231
https://doi.org/10.1007/BF02057231

[26] Neoh, K.G.; Kang, E.T.; Tan, K.L. Thermal Degradation of Leucoemeraldine, Emeraldine Base and their Complexes. Thermo-chim. Acta 1990, 171, 279-291. https://doi.org/10.1016/0040-6031(90)87027-A
https://doi.org/10.1016/0040-6031(90)87027-A

[27] Oh, S.Y.; Koh, H.C.; Choi, J.W.; Rhee, H.-W.; Kim, H.S. Preparation and Properties of Electrically Conductive Polyaniline-Polystyrene Composites by in-situ Polymerization and Blending. Polym. J. 1997, 29, 404-409. https://doi.org/10.1295/polymj.29.404
https://doi.org/10.1295/polymj.29.404

[28] Wei, Y.; Jang, G.-W.; Hsueh, K.F.; Scheer, E.M.; MacDiarmid, A.G.; Epstein, A.J. Thermal Transitions and Mechanical Properties of Films of Chemically Prepared Polyaniline. Polymer 1992, 33, 314-322. https://doi.org/10.1016/0032-3861(92)90988-9
https://doi.org/10.1016/0032-3861(92)90988-9

[29] Lee, D.; Char, K. Thermal Degradation Behavior of Polyaniline in Polyaniline/Na+-Montmorillonite Nanocomposites. Polym.

Degrad. Stab. 2002, 75, 555-560. https://doi.org/10.1016/S0141-3910(01)00259-2
https://doi.org/10.1016/S0141-3910(01)00259-2

[30] Huang, W.-S.; Humphrey, B.D.; MacDiamid, A.G. Polyaniline, a Novel Conducting Polymer. Morphology and Chemistry of its Oxidation and Reduction in Aqueous Electrolytes. J. Chem. Soc., Faraday trans. I 1986, 82, 2385-2400. https://doi.org/10.1039/F19868202385
https://doi.org/10.1039/f19868202385

[31] Desilvestro, J.; Scheifele, W.; Hass, O. In Situ Determination of Gravimetric and Volumetric Charge Densities of Battery Electrodes: Polyaniline in Aqueous and Nonaqueous Electrolytes. J.

Electrochem. Soc. 1992, 139, 2727. https://doi.org/10.1149/1.2068971
https://doi.org/10.1149/1.2068971

[32] Kobayashi, T.; Yoneyama, H.; Tamura, H. Oxidative Degrada-tion Pathway of Polyaniline Film Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 293-297. https://doi.org/10.1016/0022-0728(84)80230-2
https://doi.org/10.1016/0022-0728(84)80230-2