Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites
Attachment | Size |
---|---|
full_text.pdf | 1.27 MB |
[1] Gonzalez, L.; Lafleur, P.; Lozano, T.; Morales, A.B.; Garcia, R.; Angeles, M.; Rodriguez, F.; Sanchez, S. Mechanical and Thermal Properties of Polypropylene/Montmorillonite Nanocomposites Using Stearic Acid as Both an Interface and a Clay Surface Modifi-er. Polym. Compos. 2014, 35, 1-9. https://doi.org/10.1002/pc.22627
https://doi.org/10.1002/pc.22627
[2] Valandro, S.R.; Lombardo, P.C.; Poli, A.L.; Horn Jr., M.A.; Neumann, M.G.; Cavalheiro, C.C.S. Thermal Properties of Poly (Methyl Methacrylate)/Organomodified Montmorillonite
Nanocomposites Obtained by in situ Photopolymerization. Mater. Res. 2014, 17, 265-270. https://doi.org/10.1590/S1516-14392013005000173
https://doi.org/10.1590/S1516-14392013005000173
[3] Dhatarwal, P.; Sengwa, R.J.; Choudhary S. Effect of Intercalated and Exfoliated Montmorillonite Clay on the Structural, Dielectric and Electrical Properties of Plasticized Nanocomposite Solid
Polymer Electrolytes. Compos. Commun. 2017, 5, 1-7. https://doi.org/10.1016/j.coco.2017.05.001
https://doi.org/10.1016/j.coco.2017.05.001
[4] Cui, Y.; Kumar, S.; Kona, B.R.; van Houcke, D. Gas Barrier Properties of Polymer/Clay Nanocomposites. RSC Adv. 2015, 5, 63669-63690. https://dx.doi.org/10.1039/c5ra10333a
https://doi.org/10.1039/C5RA10333A
[5] MacDiarmid, A.G. Nobel Lecture: "Synthetic Metals": A Novel Role for Organic Polymers. Rev. Mod. Phys. 2001, 73, 701-712. https://doi.org/10.1103/RevModPhys.73.701
https://doi.org/10.1103/RevModPhys.73.701
[6] Belbachir, M.; Bensaoula, A. Composition and Method for Catalysis Using Bentonite. US 7, 094, 823 B2, January 1, 2006.
[7] Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. A New Green Catalyst for Synthesis of bis-Macromonomers of Polyethylene Glycol (PEG). Chem. Chem. Technol. 2020, 14, 468-473. https://doi.org/10.23939/chcht14.04.468
https://doi.org/10.23939/chcht14.04.468
[8] Zhu, J.; He, H.; Zhu, L.; Wen, X.; Deng, F. Characterization of Organic Phases in the Interlayer of Montmorillonite Using FTIR and 13C NMR. J. Colloid Interface Sci. 2005, 286, 239-244. https://doi.org/10.1016/j.jcis.2004.12.048
https://doi.org/10.1016/j.jcis.2004.12.048
[9] Zhu, L.; Zhu, R.; Xu, L.; Ruan, X. Influence of Clay Charge Densities and Surfactant Loading Amount on the Microstructure of CTMA-Montmorillonite Hybrids. Colloids Surf. A: Physicochem. Eng. Asp. 2007, 304, 41-48. https://doi.org/10.1016/j.colsurfa.2007.04.019
https://doi.org/10.1016/j.colsurfa.2007.04.019
[10] Caillere, S.; Henin, S.; Rautureau, M. Minéralogie des argiles; Masson: Paris, 1982.
[11] Tang, J.; Jing, X.; Wang, B.; Wang, F. Infrared Spectra of Soluble Polyaniline. Synth. Met. 1988, 24, 231-238. https://doi.org/10.1016/0379-6779(88)90261-5
https://doi.org/10.1016/0379-6779(88)90261-5
[12] Ghosh, M.; Meikap, A.K.; Chattopadhyay, S.K.; Chatterjee, S. Low Temperature Transport Properties of Cl-Doped Conducting Polyaniline. J. Phys. Chem. Solids 2001, 62, 475-484. https://doi.org/10.1016/S0022-3697(00)00189-X
https://doi.org/10.1016/S0022-3697(00)00189-X
[13] Yan, H.; Toshima, N. Chemical Preparation of Polyaniline and its Derivatives by Using Cerium(IV) Sulfate. Synth. Met. 1995, 69, 151-152. https://doi.org/10.1016/0379-6779(94)02398-I
https://doi.org/10.1016/0379-6779(94)02398-I
[14] Rout, T.K.; Jha, G.; Singh, A.K.; Bandyopadhyay, N.;
Mohanty, O.N. Development of Conducting Polyaniline Coating: A Novel Approach to Superior Corrosion Resistance. Surf. Coat. Technol. 2003, 167, 16-24. https://doi.org/10.1016/S0257-8972(02)00862-9
https://doi.org/10.1016/S0257-8972(02)00862-9
[15] Ruckenstein, E.; Yang, S. An Emulsion Pathway to Electrically Conductive Polyaniline-Polystyrene Composites. Synth. Met. 1993, 53, 283-292. https://doi.org/10.1016/0379-6779(93)91097-L
https://doi.org/10.1016/0379-6779(93)91097-L
[16] Khiew, P.S.; Huang, N.M.; Radiman, S.; Ahmad, Md.S. Synthesis and Characterization of Conducting Polyaniline-Coated
Cadmium Sulphide Nanocomposites in Reverse Microemulsion. Mater. Lett. 2004, 58, 516-521. https://doi.org/10.1016/S0167-577X(03)00537-8
https://doi.org/10.1016/S0167-577X(03)00537-8
[17] Li, Q.; Cruz, L.; Philips, P. Granular-Rod Model for Electronic Conduction in Polyaniline. Phys. Rev. B 1993, 47, 1840-1845. https://doi.org/10.1103/PhysRevB.47.1840
https://doi.org/10.1103/PhysRevB.47.1840
[18] Pouget, J.P.; Hsu, C.-H.; MacDiarmid, A.G.; Epstein, A.J. Structural Investigation of Metallic PAN-CSA and Some of its Derivatives. Synth. Met. 1995, 69, 119-120. https://doi.org/10.1016/0379-6779(94)02382-9
https://doi.org/10.1016/0379-6779(94)02382-9
[19] Pouget, J.P.; Jozefowicz, M.E.; Epstein, A.J.; Tang, X.; Mac-Diarmid, A.G. X-Ray Structure of Polyaniline. Macromolecules 1991, 24, 779-789. https://doi.org/10.1021/ma00003a022
https://doi.org/10.1021/ma00003a022
[20] Chan, H.S.O.; Ng, S.C.; Sim, W.S.; Seow, S.H.; Tan, K.L.; Tan, B.T.G. Synthesis and Characterization of Conducting poly(o-Aminobenzyl Alcohol) and its Copolymers with Aniline.
Macromolecules 1993, 26, 144-150. https://doi.org/10.1021/ma00053a022
https://doi.org/10.1021/ma00053a022
[21] Tsocheva, D.; ZIatkov, T.; Terlemezyan, L. Thermoanalytical Studies of Polyaniline 'Emeraldine base'. J. Therm. Anal. Calorim. 1998, 53, 895-904. https://doi.org/10.1023/A:1010146619792
https://doi.org/10.1023/A:1010146619792
[22] Ghosh, P.; Chakrabarti, A.; Siddhanta, S.K. Studies on Stable Aqueous Polyaniline Prepared with the Use of Polyacrylamide as the Water Soluble Support Polymer. Eur. Polym. J. 1999, 35,
https://doi.org/10.1016/S0014-3057(98)00065-2
803-813. https://doi.org/10.1016/S0014-3057(98)00065-2
https://doi.org/10.1016/S0014-3057(98)00065-2
[23] Schemid, A.L.; Córdoba de Torresi, S.I.; Bassetto, A.N.;
Carlos, I.A. Structural, Morphological and Spectroelectrochemical Characterization of poly (2-Ethyl Aniline). J. Braz. Chem. Soc. 2000, 11, 317-323. https://doi.org/10.1590/S0103-50532000000300020
https://doi.org/10.1590/S0103-50532000000300020
[24] Yoshimoto, S.; Ohashi, F.; Ohnishi, Y.; Nonami, T. Synthesis of Polyaniline-Montmorillonite Nanocomposites by the Mechano-chemical Intercalation Method. Synth. Met. 2004, 145, 265-270. https://doi.org/10.1016/j.synthmet.2004.05.011
https://doi.org/10.1016/j.synthmet.2004.05.011
[25] Chan, H.S.O.; Teo, M.Y.B.; Khor, E., Lim, C.N. Thermal Analysis of Conducting Polymers Part I. Journal of Thermal
Analysis 1989, 35, 765-774. https://doi.org/10.1007/BF02057231
https://doi.org/10.1007/BF02057231
[26] Neoh, K.G.; Kang, E.T.; Tan, K.L. Thermal Degradation of Leucoemeraldine, Emeraldine Base and their Complexes. Thermo-chim. Acta 1990, 171, 279-291. https://doi.org/10.1016/0040-6031(90)87027-A
https://doi.org/10.1016/0040-6031(90)87027-A
[27] Oh, S.Y.; Koh, H.C.; Choi, J.W.; Rhee, H.-W.; Kim, H.S. Preparation and Properties of Electrically Conductive Polyaniline-Polystyrene Composites by in-situ Polymerization and Blending. Polym. J. 1997, 29, 404-409. https://doi.org/10.1295/polymj.29.404
https://doi.org/10.1295/polymj.29.404
[28] Wei, Y.; Jang, G.-W.; Hsueh, K.F.; Scheer, E.M.; MacDiarmid, A.G.; Epstein, A.J. Thermal Transitions and Mechanical Properties of Films of Chemically Prepared Polyaniline. Polymer 1992, 33, 314-322. https://doi.org/10.1016/0032-3861(92)90988-9
https://doi.org/10.1016/0032-3861(92)90988-9
[29] Lee, D.; Char, K. Thermal Degradation Behavior of Polyaniline in Polyaniline/Na+-Montmorillonite Nanocomposites. Polym.
Degrad. Stab. 2002, 75, 555-560. https://doi.org/10.1016/S0141-3910(01)00259-2
https://doi.org/10.1016/S0141-3910(01)00259-2
[30] Huang, W.-S.; Humphrey, B.D.; MacDiamid, A.G. Polyaniline, a Novel Conducting Polymer. Morphology and Chemistry of its Oxidation and Reduction in Aqueous Electrolytes. J. Chem. Soc., Faraday trans. I 1986, 82, 2385-2400. https://doi.org/10.1039/F19868202385
https://doi.org/10.1039/f19868202385
[31] Desilvestro, J.; Scheifele, W.; Hass, O. In Situ Determination of Gravimetric and Volumetric Charge Densities of Battery Electrodes: Polyaniline in Aqueous and Nonaqueous Electrolytes. J.
Electrochem. Soc. 1992, 139, 2727. https://doi.org/10.1149/1.2068971
https://doi.org/10.1149/1.2068971
[32] Kobayashi, T.; Yoneyama, H.; Tamura, H. Oxidative Degrada-tion Pathway of Polyaniline Film Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 293-297. https://doi.org/10.1016/0022-0728(84)80230-2
https://doi.org/10.1016/0022-0728(84)80230-2