Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass

Diana Kindzera1, Roman Hosovskyi1, Volodymyr Atamanyuk1, Dmytro Symak1
Affiliation: 
1 Lviv Polytechnic National University, 12, Bandery St., 79013 Lviv, Ukraine kindzera74@ukr.net
DOI: 
https://doi.org/10.23939/chcht15.01.118
AttachmentSize
PDF icon full_text.pdf384.85 KB
Abstract: 
Filtration drying of grinded sunflower stems as the unit operation of the technological line for solid biofuel production has been proposed. Theoretical aspects of heat transfer processes during filtration drying have been analyzed. The effect of the drying agent velocity increase from 0.68 to 2.05 m/s on the heat transfer intensity has been established. The values of heat transfer coefficients have been calculated on the basis of the thin-layer experimental data and equation . Calculated coefficients for grinded sunflower stems have been correlated by the dimensionless expression within Reynolds number range of and the equation has been proposed to calculate the heat transfer coefficients, that is important for forecasting the heat energy costs at the filtration drying equipment design stage.
References: 

[1] http://agravery.com/uk/posts/show/12
[2] Deublein D., Steinhauser A.: Biogas from Waste and Renewable Resources. Wiley-VCH 2008. https://doi.org/10.1002/9783527621705
[3] Hejnfelt A., Angelidaki I.: Biomass Bioenerg., 2009, 33, 1046. https://doi.org/10.1016/j.biombioe.2009.03.004
[4] Brostow W., Menard K., Menard N.: Chem. Chem. Technol., 2009, 3, 173.
[5] Nyakuma B., Oladokun O.: Chem. Chem. Technol., 2017, 11, 392. https://doi.org/10.23939/chcht11.03.392
[6] Nyakuma B.: Environ. Climate Technol., 2015, 15, 77. https://doi.org/10.1515/rtuect-2015-0007
[7] Pavliukh L., Boichenko S., Onopa V. et al.: Chem. Chem. Technol., 2019, 13, 101. https://doi.org/10.23939/chcht13.01.101
[8] Halyshko V.: Monitoring Birzhovogo Rynku, 2014, 3, 6.
[9] Gosovskiy R., Kindzera D., Atamanyuk V.: Chem. Chem. Technol., 2016, 10, 459. https://doi.org/10.23939/chcht10.04.459
[10] Kindzera D., Atamanyuk V., Hosovskyi R.: Visnyk Odesa Nats. Acad., 2015, 42, 194.
[11] Akpinar E.: Int. Commun. Heat Mass Transfer, 2004, 31, 585. https://doi.org/10.1016/S0735-1933(04)00038-7
[12] Resio A., Aguerre, R., Suarez C.: Braz. J. Chem. Eng., 2005, 22, 303. https://doi.org/10.1590/S0104-66322005000200019
[13] Faria L., Rocha S.: Braz. J. Chem. Eng., 2000, 17, 4. https://doi.org/10.1590/S0104-66322000000400013
[14] Messai S. et al.: Therm. Sci., 2014, 18, 443. https://doi.org/10.2298/TSCI120715108M
[15] Prado M., Sartori D.: Braz. J. Chem. Eng., 2008, 25, 39. https://doi.org/10.1590/S0104-66322008000100006
[16] Akpinar Е., Toraman S.: Heat Mass Transfer, 2015, 52, 1. https://doi.org/10.1007/s00231-015-1729-6
[17] Wami E., Ibrahim M.: Int. J. Sci. Eng. Res., 2014, 5, 121.
[18] Snezhkin Yu., Korinchuk D., Vorobiov L., Kharin O.: Prom. Teplotechn., 2006, 28, 41.
[19] Kindzera D., Atamanyuk V., Pelekh M., Hosovskyi R.: Chem., Technol. Appl. Substances, 2019, 2, 110. https://doi.org/10.23939/ctas2019.01.110
[20] Atamanyuk, V., Gumnytsky Ya.: Naukovi Osnovy Filtracijnogo Sushinnya Dispersnykh Materialiv. Vyd-vo Lviv Polytech., Lviv 2013.
[21] Atamanyuk V., Matkivska I., Barna I.: Visnyk Nats. Univ. "Lvivska politechnika". 2015, 812, 302.
[22] Atamanyuk V., Huzova I., Gnativ Z.: Food Sci. Technol., 2017, 11, 21. https://doi.org/10.15673/fst.v11i4.727
[23] Atamanyuk V. Humnyckyj Ja., Mosjuk M.: Naukovyj Visnyk NLTU Ukrainy, 2011, 21, 95.