Fuel Characterization and Thermogravimetric Analysis of Melon (Citrullus colocynthis L.) Seed Husk

Bemgba Nyakuma1, 2, Olagoke Oladokun1, 2, Yakubu Dodo1, Syie Wong2, Habibu Uthman1 and Muhamad Halim3
1 Centre for Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia; 2 Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia; 3 Centre of Polymer Composite Research & Technology (PoCResT), Institute of Science, Universiti Teknologi MARA (UiTM), Shah Alam, Selangor, Malaysia; bbnyax1@gmail.com, bnbevan2@live.utm.my
PDF icon full_text.pdf152.91 KB
The thermochemical fuel properties of melon seed husk (MSH) were characterized to examine its solid biofuel (SBF) potential for future bioenergy utilization. MSH is a cheap, abundant and renewable source of lignocellulosic waste generated from the extraction of vegetable oil from melon seeds. Thermochemical characterization was examined by proximate, ultimate, and thermogravimetric (TG-DTG) analyses, as well as Fourier transform infra-red (FT-IR) spectroscopy. The results showed that MSH exhibits significant volatile matter, fixed carbon, carbon and low nitrogen, sulphur and ash content with a heating value (HHV) of 19.02 MJ/kg. FT-IR analysis indicated functional groups for aliphatic, ester, ketone, alcohol, and aromatic compounds. Thermal decomposition of MSH occurred in three stages: drying (303–448 K), devolatization (448–673 K) and char degradation (673–1073 K).

[1] Achigan-Dako E., Fagbemissi R., Avohou H. et al.: Biotechnol. Agron. Soc. Environ, 2008, 12, 393.

[2] Ezeike G.: Int. J. Food Sci. Technol., 1988, 23, 511.

[3] FAO: FAOSTAT Statistics 2008-2013, 2015.

[4] Ajibola O., Eniyemo S., Fasina O. and Adeeko K.: J. Agr. Eng. Res., 1990, 45, 45.

[5] Foo K. and Hameed B.: Desalination Water Treatment, 2012, 47, 130.

[6] Van der Werf G., Morton D., DeFries R. et al.: Nature Geosci., 2009, 2, 737.

[7] Meinshausen M., Smith S., Calvin K. et al.: Climatic Change, 2011, 109, 213.

[8] Ramanathan V., Crutzen P., Kiehl J. and Rosenfeld D.: Science, 2001, 294, 2119.

[9] Godfray H., Beddington J., Crute I. et al.: Science, 2010, 327, 812.

[10] McMichael A., Powles J., Butler C. and Uauy R.: Lancet, 2007, 370, 1253.

[11] Change I.: Genebra, Suíça, 2001.

[12] Louis M. and Hess J.: Am. J. Prev. Med., 2008, 35, 527.

[13] Werle S.: Ecol. Chem. Eng. A, 2013, 20, 279.

[14] Ragauskas A., Williams C., Davison B. et al.: Science, 2006, 311, 484.

[15] Mosier N., Wyman C., Dale B. et al.: Bioresource Technol., 2005, 96, 673.

[16] Magdziarz A. and Werle S.: Waste Manage., 2014, 34, 174.

[17] Slopiecka K., Bartocci P. and Fantozzi F.: Appl. Energy, 2012, 97, 491.

[18] Damartzis T., Vamvuka D., Sfakiotakis S. and Zabaniotou A.: Bioresource Technol., 2011, 102, 6230.

[19] Basu P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Academic Press, New York 2013.

[20] Channiwala S. and Parikh P.: Fuel, 2002, 81, 1051.

[21] Vassilev S., Baxter D., Andersen L. and Vassileva C.: Fuel, 2010, 89, 913.

[22] Basu P.: Biomass Gasification and Pyrolysis: Practical Design and Theory. Academic Press, New York 2010.

[23] Karimipour S., Gerspacher R., Gupta R. and Spiteri R.: Fuel, 2013, 103, 308.

[24] Probstein R. and Hicks R.: Synthetic Fuels: Courier Corporation, New York 2006.

[25] Yang H., Yan R., Chin T. et al.: Energ. Fuel., 2004, 18, 1814.

[26] Zapata B., Balmaseda J., Fregoso-Israel E. and Torres-Garcia E.: J. Therm. Anal. Calorim., 2009, 98, 309.

[27] Lopez-Velazquez M., Santes V., Balmaseda J. and Torres-Garcia E.: J. Anal. Appl. Pyrol., 2013, 99, 170.

[28] Yang H., Yan R., Chen H. et al.: Fuel, 2007, 86, 1781.

[29] McKendry P.: Bioresource Technol., 2002, 83, 37.

[30] Li L., Wang G., Wang S. and Qin S.: J. Therm. Anal. Calorim., 2013, 114, 1183.

[31] Acıkalin K.: J. Therm. Anal. Calorim., 2011, 105, 145.

[32] Ren S., Lei H., Wang L. et al.: Biosystems Eng., 2013, 116, 420.