Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Features of the Swelling Kinetics of Polymer Materials in Blended Diesel Fuel

Olena Shevchenko1, Daryna Popytailenko1, Yurii Ebich1, Kostiantyn Zamikula1, Kostiantyn Sukhyi1, Nataliya Vytrykush2
Affiliation: 
1 Ukrainian State University of Science and Technologies, 2 Lazaryan St., Dnipro 49010, Ukraine 2 Lviv Polytechnic National University, 12 S. Bandera St., Lviv 79013, Ukraine darinapopy@gmail.com
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
The work is devoted to determining the features of the swelling kinetic patterns of polymer materials in contact with blended fuel containing fatty acid esters. Kinetic equations for predicting the behavior of polymer materials in contact with blended fuel at different temperatures were obtained. Peculiarities of the swelling kinetics of polymer materials with different chemical structures in blended diesel fuel were studied. It was found that the process proceeds in two stages for any temperature conditions. The effect of fatty acid esters in the composition of blended diesel fuel on the stability of polymer materials depending on their structure and temperature factor was determined. An approach to the selection of polymer materials resistant to the effects of fatty acid esters is proposed. The patterns of changes in the swelling resistance of polymer materials upon contact with blended diesel fuel, depending on their structure, were determined.
References: 

[1] Papeikin, O.; Bodachivska, L.; Venger, I. Waste Food Oils as Components of Eco-Friendly Grease. Chem. Chem. Technol. 2023, 17, 431–437 https://doi.org/10.23939/chcht17.02.431
[2] Mohammed, A.T.; Jaafar, M.N.M.; Othman, N.; Veza, I.; Mohammed, B.; Oshadumi, F.A.; Sanda, H.Y. Soil Fertility Enrichment Potential of Jatropha Curcas for Sustainable Agricultural Production: A Case Study of Birnin Kebbi, Nigeria. Ann. Rom. Soc. Cell Biol. 2021, 25, 21061–21073.
[3] Datta, A.; Mandal, B.K. A Comprehensive Review of Biodiesel as an Alternative Fuel for Compression Ignition Engine. Renewable Sustainable Energy Rev. 2016, 57, 799–821. https://doi.org/10.1016/j.rser.2015.12.170
[4] Konovalov, S.; Patrylak, L.; Zubenko, S.; Okhrimenko, M.; Yakovenko, A.; Levterov, A.; Avramenko, A. Alkali Synthesis of Fatty Acid Butyl and Ethyl Esters and Comparative Bench Motor Testing of Blended Fuels on their Basis. Chem. Chem. Technol. 2021, 15, 105–117. https://doi.org/10.23939/chcht15.01.105
[5] Chuah, L.F.; Bokhari, A.; Asif, S.; Klemeš, J.J.; Dailin, D.J.; El Enshasy, H.; Yusof, A.H.M. A Review of Performance and Emission Characteristic of Engine Diesel Fuelled by Biodiesel. Chem. Eng. Trans. 2022, 94, 1099–1104. https://doi.org/10.3303/CET2294183
[6] Popytailenko, D.; Shevchenko, O. Improved Method for Determining Microbiological Contamination of Fatty Acid Methyl Esters and Blended Diesel Fuels. Chem. Chem. Technol. 2023, 17, 203–210. https://doi.org/10.23939/chcht17.01.203
[7] Singh, S.P.; Singh, D. Biodiesel Production through the Use of Different Sources and Characterization of Oils and their Esters as the Substitute of Diesel: A Review. Renewable Sustainable Energy Rev. 2010, 14, 200–216. https://doi.org/10.1016/j.rser.2009.07.017
[8] Haseeb, A.S.M.A.; Masjuki, H.H.; Ann, L.J.; Fazal, M.A. Corrosion Characteristics of Copper and Leaded Bronze in Palm Biodiesel. Fuel Process. Technol. 2010, 91, 329–334. https://doi.org/10.1016/j.fuproc.2009.11.004
[9] Haseeb, A.S.M.A.; Sia, S.Y.; Fazal, M.A.; Masjuki, H.H. Effect of Temperature on Tribological Properties of Palm Biodiesel. Energy 2010, 35, 1460–1464. https://doi.org/10.1016/j.energy.2009.12.001
[10] Chandran, D. Compatibility of Diesel Engine Materials with Biodiesel Fuel. Renew. Energ. 2020, 147, 89–99. https://doi.org/10.1016/j.renene.2019.08.040
[11] Kass, M.; Janke, C.; Connatser, R.; West, B.; Szybist, J.; Sluder, S. Influence of Biodiesel Decomposition Chemistry on Elastomer Compatibility. Fuel 2018, 233, 714–723. https://doi.org/10.1016/j.fuel.2018.06.107
[12] Maru, M.M.; Lucchese, M.M.; Legnani, C.; Quirino, W.G.; Balbo, A.; Aranha, I.B.; Costa, L.T.; Vilani, C.; de Sena, L.A.; Damasceno, J.C. et al. Biodiesel compatibility with carbon steel and HDPE parts. Fuel Process. Technol. 2009, 90, 1175–1182.
[13] Linhares, F.N.; Gabriel, C.F.S.; Sousa, A.M.F.D.; Leite, M.C.A.M.; Furtado, C.R.G. Nitrile Rubber and Carboxylated Nitrile Rubber Resistance to Soybean Biodiesel. Polímeros 2018, 28, 23–29. https://doi.org/10.1590/0104-1428.09816
[14] Zhao, J.; Yang, R.; Iervolino, R.; Barbera, S. Changes of Chemical Structure and Mechanical Property Levels During Thermo-Oxidative Aging of NBR. Rubber Chem. Technol. 2013, 86, 591–603. https://doi.org/10.5254/RCT.13.87969
[15] Akhlaghi, S.; Hedenqvist, M.S.; Conde Braña, M.T.; Bellander, M.; Gedde, U.W. Deterioration of Acrylonitrile Butadiene Rubber in Rapeseed Biodiesel. Polym. Degrad. Stab. 2015, 111, 211–222. https://doi.org/10.1016/j. polymdegradstab.2014.11.012
[16] Mostafa, A.; Abouel-Kasem, A.; Bayoumi, M.R.; El-Sebaie, M.G. The Influence of CB Loading on Thermal Aging Resistance of SBR and NBR Rubber Compounds under Different Aging Temperature. Mater. Des. 2009, 30, 791–795. https://doi.org/10.1016/j.matdes.2008.05.065
[17] Fazal, M.A.; Rubaiee, S.; Al-Zahrani, A. Overview of the Interactions between Automotive Materials and Biodiesel Obtained from Different Feedstocks. Fuel Process. Technol. 2019, 196, 106178. https://doi.org/10.1016/j.fuproc.2019.106178
[18] Bessee, G.B.; Fey, J.P. Compatibility of Elastomers and Metals in Biodiesel Fuel Blends. Society of Automotive Engineers paper 1997, 971690, https://doi.org/10.4271/971690
[19] Haseeb, A.S.M.A.; Fazal, M.A.; Jahirul, M.I.; Masjuki, H.H. Compatibility of Automotive Materials in Biodiesel: A Review. Fuel 2011, 90, 922–931. https://doi.org/10.1016/j.fuel.2010.10.042
[20] Linhares, F.N.; Corrêa, H.L.; Khalil, C.N.; Leite, M.C.A.M.; Furtado, C.R.G. Study of the Compatibility of Nitrile Rubber with Brazilian Biodiesel. Energy 2013, 49, 102–106. https://doi.org/10.1016/j.energy.2012.10.040
[21] Veza, I.; Zainuddin, Z.; Tamaldin, N.; Idris, M.; Irianto, I.; Fattah, I.M.R. Effect of Palm Oil Biodiesel Blends (B10 and B20) on Physical and Mechanical Properties of Nitrile Rubber Elastomer. Results Eng. 2022, 16, 100787. https://doi.org/10.1016/j.rineng.2022.100787
[22] Shevchenko, O.; Popytailenko, D. Book of Abstracts, VI International Science and Technology conf. Modern technologies of fossil fuel processing, Kharkiv, April, 11-12, 2023, Kharkiv: NTU "KhPI", 2023.
[23] Shevchenko, O.; Popytailenko, D. Book of Abstracts, IX International Scientific-Technical Conference theory and practice of rational use of traditional and alternative fuels and lubricants, Kyiv – Warsaw, July, 03-07, 2023, K.: Center for Education Literature, 2023.
[24] Kittur, M.I.; Andriyana, A.; Ang, B.C.; Ch'ng, S.Y.; Mujtaba, M.A. A Swelling of Rubber in Blends of Diesel and Cottonseed Oil Biodiesel. Polym. Test. 2021, 96, 107116. https://doi.org/10.1016/j.polymertesting.2021.107116
[25] Schott, H. Swelling Kinetics of Polymers. J. Macromol. Sci. Part B Phys. 1992, 31, 1–9. https://doi.org/10.1080/00222349208215453
[26] Bielokon, Yu.O.; Ohinskyi, Y.K.; Bielokon, K.V.; Zherebtsov, O.A. Teoretychne ta eksperymentalne vyznachennia enerhii aktyvatsii utvorennia intermetalidiv u systemakh «nikel-aliuminii» ta «tytan-aliuminii». Metalurhiia - Metallurgy 2017, 37, 81–85.
[27] Crapse, J.; Pappireddi, N.; Gupta, M.; Shvartsman, S.Y.; Wieschaus, E.; Wühr, M. Evaluating the Arrhenius Equation for Developmental Processes. Mol. Syst. Biol. 2021, 178, e9895. https://doi.org/10.15252/msb.20209895