Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Electrosynthesis of Ni-Co/Hydroxyapatite as a Catalyst for Hydrogen Generation via the Hydrolysis of Aqueous Sodium Borohydride (NaBH4) Solutions

Adrian Nur1, Anatta W. Budiman1, Arif Jumari1, Nazriati Nazriati2, Fauziatul Fajaroh2
Affiliation: 
1 Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Jebres, 57126 Surakarta, Indonesia 2 Department of Chemistry, Faculty of Mathematics and Science, State University of Malang, 65111 Malang, Indonesia adriannur@staff.uns.ac.id
DOI: 
https://doi.org/10.23939/chcht15.03.389
AttachmentSize
PDF icon full_text.pdf512.6 KB
Abstract: 
To generate hydrogen from its storage as NaBH4, a catalyst was synthesized via an electrochemical method. The catalyst, Ni-Co, had hydroxyapatite as a support catalyst. The electrochemical cell consisted of a DC power supply, a carbon anode and cathode, and a bipolar membrane to separate the cell into two chambers. The current density was adjusted to 61, 91, and 132 mA/cm2. The electrolysis time was 30, 60, and 90 min. The particles produced were analyzed by XRD and SEM/EDX and tested in the hydrolysis of NaBH4 for hydrogen generation. The Ni-Co/HA catalyst test concluded that the period of time used for electrolysis during catalyst formation was positively correlated with the rate of NaBH4 hydrolysis in the production of hydrogen. The highest rate of hydrogen production was obtained using the synthesized catalyst with a current density of 92 mA/cm2. The NaBH4 hydrolysis reaction followed a first-order reaction with the rate constant of (2.220–14.117)•10-3 l/(g•min). The Arrhenius equation for hydrolysis reactions within the temperature range of 300–323 K is k = 6.5•10-6exp(-6000/T).
References: 

[1] Herrmann A, Mädlow A, Krause H.: Int. J. Hydrogen Energy, 2019, 44, 19061. https://doi.org/10.1016/j.ijhydene.2018.06.014
https://doi.org/10.1016/j.ijhydene.2018.06.014

[2] Moriarty P., Honnery D.: Int. J. Hydrogen Energy, 2019, 44, 16029. https://doi.org/10.1016/j.ijhydene.2019.04.278
https://doi.org/10.1016/j.ijhydene.2019.04.278

[3] Abe J., Popoola A., Ajenifuja E., Popoola O.: Int. J. Hydrogen Energy, 2019, 44,15072. https://doi.org/10.1016/j.ijhydene.2019.04.068
https://doi.org/10.1016/j.ijhydene.2019.04.068

[4] Kojima Y.: Int. J. Hydrogen Energy, 2019, 44, 18179. https://doi.org/10.1016/j.ijhydene.2019.05.119
https://doi.org/10.1016/j.ijhydene.2019.05.119

[5] Zhong H., Ouyang L., Ye J. et al.: Energy Storage Mater., 2017, 7, 222. https://doi.org/10.1016/j.ensm.2017.03.001
https://doi.org/10.1016/j.ensm.2017.03.001

[6] Ali N., Yahya M., Mustafa N. et al.: Int. J. Hydrogen Energy, 2019, 44, 6720. https://doi.org/10.1016/j.ijhydene.2019.01.149
https://doi.org/10.1016/j.ijhydene.2019.01.149

[7] Wang Y., Li G., Wu S. et al.: Int. J. Hydrogen Energy, 2017, 42, 16529. https://doi.org/10.1016/j.ijhydene.2017.05.034
https://doi.org/10.1016/j.ijhydene.2017.05.034

[8] Pei Z. Wei, Wu C., Bai Y. et al.: Int. J. Hydrogen Energy, 2017, 42, 14725. https://doi.org/10.1016/j.ijhydene.2017.04.124
https://doi.org/10.1016/j.ijhydene.2017.04.124

[9] Seven F., Sahiner N.: J. Power Sources, 2014, 272, 128. https://doi.org/10.1016/j.jpowsour.2014.08.047
https://doi.org/10.1016/j.jpowsour.2014.08.047

[10] de Vasconcelos B., Minh D., Nzihou P.:Catal. Today, 2018, 310, 107. https://doi.org/10.1016/j.cattod.2017.05.092
https://doi.org/10.1016/j.cattod.2017.05.092

[11] Malpica-Maldonado J., Melo-Banda J., Martínez-Salazar A. et al.: Int. J. Hydrogen Energy, 2019, 44, 12446. https://doi.org/10.1016/j.ijhydene.2018.08.152
https://doi.org/10.1016/j.ijhydene.2018.08.152

[12] Nur A., Jumari A., Budiman A. et al.: MATEC Web of Conferences. 2018, 156, 05015. https://doi.org/10.1051/matecconf/201815605015
https://doi.org/10.1051/matecconf/201815605015