Effect of Br-Grafted Multi-Walled Carbon Nanotubes on the Model Oxidative Environment

Eldar Zeynalov1, Joerg Friedrich2, Manfred Wagner2 and Gundula Hidde3
1National Academy of Sciences of Azerbaijan, Institute of Petrochemical Processes, 30, Khojaly Ave., AZ 1025 Baku, Azerbaijan; zeynalov_2000@yahoo.com 2Technical University, Straße des 17 Juni, 135, D-10623 Berlin, Germany 3Federal Institute of Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany
PDF icon full_text.pdf190.52 KB
Two samples of brominated multi-walled carbon nanotubes [(Br)n-MWCNTs] produced by the plasma-chemical technique were involved in the liquid-phase initiated oxidation of cumene. The powerful catalytic effect of (Br)n-MWCNTs has been confirmed to recommend the substances for the use in oxidation of alkyl aromatic hydrocarbons as active additives. Obviously this phenomenon originates from the peculiarities of electronic configuration of (Br)n-MWCNTs pattern. To elucidate a mechanism of the acceleration action of the functionalized CNTs the model experiment with a single-walled carbon nanotube [(Br)n-SWCNTs] at standard model conditions was conducted. There has been established that Br-groups are consumed during the reaction and (Br)n-CNTs act in the model cumene oxidation as an additional source of free radicals and may be considered as a complementary initiator. The general scheme of oxidation has been proposed and additional initiation rates promoted by (Br)n-MWCNTs have been calculated.

[1] Hirsch A. and Vostrowsky O.: Functionalization of Carbon Nanotubes. [in:] Schluter D. (Ed.) Functional Molecular Nanostructures. Springer, Berlin/Heidelberg 2005, 193-237.

[2] Ouyang M., Huang J-L. and Lieber C.: Acc. Chem. Res., 2002, 35, 1018.

[3] Lu F., Gu L., Meziani M. et al.: Adv. Mat., 2009, 21, 139.

[4] Tasis D., Tagmatarchis N., Bianco A. and Prato M.: Chem. Rev., 2009, 106, 1105.

[5] Singh P., Campidelli S., Giordani S. et al.: Chem. Soc. Rev., 2009, 38, 2214.

[6] Saito R., Dresselhaus G. and Dresselhaus M.: Physical Properties of Carbon Nanotubes. World Scientific Publ. Co.: London 1998.

[7] Unger E., Graham A., Kreupl F. et al.: Curr. Appl. Phys., 2002, 2, 107.

[8] Yu J., Huang K., Liu S. et al.: Chinese J. Inorg. Chem., 2008, 24, 293.

[9] Friedrich J., Wettmarshausen S., Hanelt S. et al.: Carbon, 2010, 48, 3884.

[10] Hou P., Bai S., Yang Q. et al.: Carbon, 2002, 40, 81.

[11] Fan Y., Kaufmann A., Mikasyan A. and Varma A.: Carbon, 2006, 44, 2160.

[12] Chen Y., Green M., Griffin J. et al.: Adv. Mat., 1996, 8, 1012.

[13] Romanenko A., Anikeeva O., Okotrub A. et al.: Phys. Solid State, 2002, 44, 659.

[14] Lee R., Kim H., Fischer J. et al.: Nature, 1997, 388, 255.

[15] Li J., Vaisman L., Marom G. and Kim J.: Carbon, 2007, 45, 744.

[16] Zeynalov E., Friedrich J., Hidde G. et al.: Erdöl Erdgaz Kohle, 2012, 3, 45.

[17] Zeynalov E., Friedrich J., Meyer-Plath A. et al.: Appl. Catal. A, 2013, 454, 115.

[18] Tsepalov V., Kharitonova A., Gladyshev G. and Emanuel N.: Kinetika i Katalyz, 1977, 18, 1034.

[19] Zeynalov E. and Vasnetsova O.: Kineticheskyi Skrining Inhibitorov Radikalnykh Reakciy. Elm, Baku 1993.

[20] Van Hook J. and Tobolsky A.: J. Am. Chem. Soc., 1958, 80, 779.

[21] Emanuel N., Denisov E. and Maizus Z.: Liquid Phase Oxidation of Hydrocarbons. Plenum Press, New York 1967.

[22] Gaponova I., Fedotova T., Tsepalov V. et al.: Kinetika i Katalyz, 1971, 12, 1012.

[23] Scott G.: Atmospheric Oxidation and Antioxidants, 2nd edn. Elsevier, NY-Amsterdam 1993.

[24] Zeynalov E. and Friedrich J.: Polym. & Polym. Composites, 2006, 14, 779.

[25] Zeynalov E. and Friedrich J.: Open Mat. Sci. J., 2008, 2, 28.

[26] Vedernikov A.: Soros Educat. J., 1998, 8, 32.