Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Eco-Friendly Bamboo-Based Composites

Tamara Tatrishvili1,2, Omar Mukbaniani, Nikoloz Kvnikadze1,2, Shota Chikhladze2
Affiliation: 
1 Ivane Javakhishvili’ Tbilisi State University, Department of Macromolecular Chemistry, I. Chavchavadze Ave., 1, Tbilisi 0179, Georgia 2 Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, I. Chavchavadze Ave., 13, Tbilisi 0186, Georgia tamar.tatrishvili@tsu.ge
DOI: 
https://doi.org/10.23939/chcht18.01.044
AttachmentSize
PDF icon full_text.pdf1.07 MB
Abstract: 
The study focuses on obtaining bamboo-based composite materials and new environmentally friendly binders with different degrees of silylation (15-35%) at different pressures and temperatures. The synthesis was carried out using silylated polystyrene (poly[trimethoxy(4-vinylphenethyl)] silane) and styrene as a binder and reinforcing agent in the presence of organic/inorganic additives, antioxidants and antipirene. Poly[trimethoxy(4-vinylphenethyl)] silane, a solid brown substance, was synthesized via an alkylation reaction of vinyltrimethoxysilane and polystyrene, in the presence of anhydrous AlCl3. This paper presents the development of composites for ecological purposes (eco-composites) using bamboo fibers and their basic mechanical properties. The surface structures of the new composites were studied by several techniques including electron microscopy, energy dispersive X-ray microanalysis, bending test, Charpy impact test, thermogravimetry study, and water absorption determination. The new composites are characterized by good mechanical properties, thermal resistance, ecological purity, and water absorption capacity much smaller than the water absorption of existing particle boards.
References: 

[1] Mohanty, B.N.; Sujatha, D.; Uday, D.N. Bamboo Composite Material: Game-changer for Developing Economies; 10th World Bamboo Congress, Korea 2015.

[2] Chen, H.C.; Chen, T.Y.; Hsu, C.H. Effects of Wood Particle Size and Mixing Ratios of HDPE on the Properties of the Composites. Holz Roh Werkst 2006, 64, 172-177. https://doi.org/10.1007/s00107-005-0072-x
https://doi.org/10.1007/s00107-005-0072-x

[3] Laemlaksakul, V.; Kaewkuekool, S. Laminated Bamboo Materials for Furniture - A Systematic Approach to Innovative Product Design. WSEAS Transactions on Advances in Engineering Education 2006, 3, 424-430.

[4] Li, S.H.; Zeng, Q.Y.; Xiao, Y.L.; Fu, S.Y.; Zhou, B.L. Biomimicry of Bamboo Bast Fiber with Engineering Composite Materials. Mater. Sci. Eng. C 1995, 3, 125-130. https://doi.org/10.1016/0928-4931(95)00115-8
https://doi.org/10.1016/0928-4931(95)00115-8

[5] Zhu, J.X.; Sheng, S.L. Discussing the Ecological Quality of Bamboo Structural Building. Journal of Building Science 2005, 21, 92-94.

[6] Shen, Z.R.; Ni, Y.; Hu, Z. Material Test and Structural Analysis For "Germany and China-Together Cooperation" Bamboo Structure Exhibition Hall. Journal of Structural Engineers 2009, 25, 51-54.

[7] Wen, Y.; Xu, K.; Tang, J.; Li, Y. Research Status and Development trend of Steel-Bamboo Composite Structure. Adv Mat Res, 2014, 893, 716-719. https://doi.org/10.4028/www.scientific.net/AMR.893.716
https://doi.org/10.4028/www.scientific.net/AMR.893.716

[8] Shin, F.G.; Xian, X.J.; Zheng, W.P.; Yipp, M.W. Analyses of the Mechanical Properties and Microstructure of Bamboo-Epoxy Composites. J Mater Sci 1989, 24, 3483-3490. https://doi.org/10.1007/BF02385729
https://doi.org/10.1007/BF02385729

[9] Okubo, K.; Fujii, T.; Yamamoto, Y. Development of Bamboo-Based Polymer Composites and Their Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2004, 35, 377-383. https://doi.org/10.1016/j.compositesa.2003.09.017
https://doi.org/10.1016/j.compositesa.2003.09.017

[10] Janssen, J.J.A. Building with bamboo (2nd ed.); Intermediate Technology Publication: London, 1995.
https://doi.org/10.3362/9781780442143.001

[11] Amada, S.; Ichikawa, Y.; Munekata, T.; Nagase, Y.; Shimizu K. Fiber Texture and Mechanical Graded Structure of Bamboo. Compos. B. Eng. 1997, 28, 13-20. https://doi.org/10.1016/S1359-8368(96)00020-0
https://doi.org/10.1016/S1359-8368(96)00020-0

[12] Abdulkareem, S.A.; Adeniyi, A.G. Production of Particleboards Using Polystyrene and Bamboo Wastes. Niger. J. Technol. 2017, 36, 788-793. http://dx.doi.org/10.4314/njt.v36i3.18
https://doi.org/10.4314/njt.v36i3.18

[13]. Mukbaniani, O.; Aneli, J.; Buzaladze, G.; Markarashvili, E.; Tatrishvili, T. Composites on the Basis of Straw with Some Organic and Inorganic Binders. Oxid. Commun. 2016, 39, 2763-2777.
https://doi.org/10.1201/9781315365985-9

[14] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane. Chem. Chem. Technol. 2023, 17, 35-44. https://doi.org/10.23939/chcht17.01.035
https://doi.org/10.23939/chcht17.01.035

[15] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201-209. https://doi.org/10.23939/chcht11.02.201
https://doi.org/10.23939/chcht11.02.201

[16] Tolentino, M.S.; Carpena, J.F.; Javier, R.M.; Aquino, R.R. Thermal Treatment Temperature and Time Dependence of Contact Angle of Water on Fluorinated Polystyrene as Hydrophobic Film Coating. IOP Conf. Series: Mater. Sci. Eng. 2017, 205, 012024. https://doi.org/10.1088/1757-899X/205/1/012024
https://doi.org/10.1088/1757-899X/205/1/012024

[17] Mukbaniani, O.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Pachulia, Z.; Pirtskheliani, N. Synthesis of Triethoxy(Vinylphenethyl)silane with Alkylation Reaction of Vinyltriethoxysilane to Styrene. Oxid. Commun. 2022, 45, 309-320.

[18] Iulianelli, G.; Bruno Tavares, M.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225-229. https://doi.org/10.23939/chcht04.03.225
https://doi.org/10.23939/chcht04.03.225

[19] Lee, S.-H.; Ohkita, T. Mechanical and Thermal Flow Properties of Wood Flour-Biodegradable Polymer Composites. J. Appl. Polym. Sci. 2003, 90, 1900-1905. https://doi.org/10.1002/app.12864
https://doi.org/10.1002/app.12864

[20] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33-41. https://doi.org/10.4236/wjm.2015.53004
https://doi.org/10.4236/wjm.2015.53004

[21] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Demchuk, Y.; Astakhova, O.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials 2021, 14, 1320. https://doi.org/10.3390/ma14051320
https://doi.org/10.3390/ma14051320

[22] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377-386. https://doi.org/10.23939/chcht16.03.377
https://doi.org/10.23939/chcht16.03.377

[23] Mukbaniani, O.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T. Ecologically Friendly Polymer Composites on the Base of Leafs. Oxid. Commun. 2021, 44, 908-921.

[24] Mukbaniani, O.; Brostow, W.; Aneli, J.; Markarashvili, E.; Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym Adv Technol 2020, 31, 2504-2511. https://doi.org/10.1002/pat.4965
https://doi.org/10.1002/pat.4965

[25] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325-338. https://doi.org/10.23939/chcht17.02.325
https://doi.org/10.23939/chcht17.02.325

[26] Mukbaniani, O.; Brostow, W.; Hagg Lobland, H.E.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Dzidziguri, D.; Buzaladze, G. Composites Containing Bamboo with Different Binders. Pure Appl. Chem. 2018, 90, 1001-1009. https://doi.org/10.1515/pac-2017-0804
https://doi.org/10.1515/pac-2017-0804

[27] Xu, G.; Wang, L.; Liu, J.; Wu, J. FTIR and XPS Analysis of the Changes in Bamboo Chemical Structure Decayed by White-Rot and Brown-Rot Fungi. Appl. Surf. Sci. 2013, 280, 799-805. https://doi.org/10.1016/j.apsusc.2013.05.065
https://doi.org/10.1016/j.apsusc.2013.05.065

[28] Kickelbick, G. Concepts for the Incorporation of Inorganic Building Blocks into Organic Polymers on a Nanoscale. Prog. Polym. Sci. 2003, 28, 83-114. https://doi.org/10.1016/S0079-6700(02)00019-9
https://doi.org/10.1016/S0079-6700(02)00019-9

[29] Bledzky, A.; Letman, M.; Viksne, A.; Rence, L. A Comparison of Compounding Processes and Wood Type for Wood Fibre-PP Composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 789-797. https://doi.org/10.1016/j.compositesa.2004.10.029
https://doi.org/10.1016/j.compositesa.2004.10.029

[30] Shi, S.Q.; Gardner, D.J. Hygroscopic Thickness Swelling Rate of Compression Molded Wood Fiberboard and Wood Fiber/Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1276-1285. https://doi.org/10.1016/j.compositesa.2005.08.015
https://doi.org/10.1016/j.compositesa.2005.08.015