Dehydration Pervaporation of Ethyl Acetate-Water Mixture via Sago/PVA Composite Membranes Using Surface Methodology

Abdulhakim Alamaria and Ghazali Nawawi
Affiliation: 
Faculty of Chemical Engineering, Malaysia University of Technology, 81300 Skudai, Johor, Malaysia Centre of Lipid Engineering and Applied Research, Malaysia University of Technology, 81310 UTM Johor Bahru, Johor, Malaysia; hakim792016@gmail.com
DOI: 
https://doi.org/10.23939/chcht09.04.479
AttachmentSize
PDF icon full_text.pdf252.23 KB
Abstract: 
In the present study hydrophilic sago/polyvinyl alcohol (PVA) blend membranes were used for pervaporation of ethyl acetate-water mixture. The effects of feed concentration, temperature and permeate pressure on the separation factor and permeation flux were studied by using response surface methodology (RSM). The central composite design (CCD) was used to design the experiment and analyze pervaporation performance of homogenous sago/PVA membranes and also to obtain process optimum conditions. It was observed that the permeation flux and selectivity were changed by feed temperature and concentration more than the permeate pressure. The validity of the model was confirmed by the experiments.
References: 

[1] Monick J.: Alcohols, Vol. 19. Reinhold Book Corporation, New York 1968.

[2] Zhang X. et al.: J. Membrane Sci., 2009, 327, 274.
https://doi.org/10.1016/j.memsci.2008.11.034

[3] Xia S. et al.: Sep. Purif. Technol., 2011, 77, 53.
https://doi.org/10.1016/j.seppur.2010.11.019

[4] Bai Y. et al.: J. Membrane Sci., 2008, 325, 932.
https://doi.org/10.1016/j.memsci.2008.09.019

[5] Konakom K. et al.: AIP Conference, USA, San Francisco 2011, 262.

[6] Ahmad N., Leo C. and Ahmad A.: Sep. Purif. Technol., 2013, 107, 187.
https://doi.org/10.1016/j.seppur.2013.01.011

[7] Amador-Hernández J. and Luque de Castro M.: Food Chem., 2000, 68, 387.
https://doi.org/10.1016/S0308-8146(99)00223-X

[8] Yeom C.-K. and Lee K.-H.: J. Membrane Sci., 1996, 109, 257.
https://doi.org/10.1016/0376-7388(95)00196-4

[9] Du J., Chakma A. and Feng X.: Sep. Purif. Technol., 2008, 64, 63.
https://doi.org/10.1016/j.seppur.2008.08.004

[10] Feng X. and Huang R.: Ind. & Eng. Chem. Res., 1997, 36, 1048.
https://doi.org/10.1021/ie960189g

[11] Abdehagh N., Tezel F. and Thibault J.: Biomass & Bioenergy, 2014, 60, 222.
https://doi.org/10.1016/j.biombioe.2013.10.003

[12] Dong Z. et al.: J. Membrane Sci., 2014, 450, 38.
https://doi.org/10.1016/j.memsci.2013.08.039

[13] Drioli E., Zhang S. and Basile A.: J. Membrane Sci., 1993, 80, 309.
https://doi.org/10.1016/0376-7388(93)85155-P

[14] Wee S.-L., Tye C.-T. and Bhatia S.: Sep. Purif. Technol., 2008, 63, 500.
https://doi.org/10.1016/j.seppur.2008.07.010

[15] Li Y. et al.: J. Membrane Sci., 2007, 297, 10.
https://doi.org/10.1016/j.memsci.2007.03.041

[16] Kanti P. et al.: Sep. Purif. Technol., 2004, 40, 259.
https://doi.org/10.1016/j.seppur.2004.03.003

[17] Huang R., Pal R. and Moon G.: J. Membrane Sci., 1999, 160, 101.
https://doi.org/10.1016/S0376-7388(99)00071-X

[18] Zhang Q. et al.: J. Membrane Sci., 2009, 335, 68.
https://doi.org/10.1016/j.memsci.2009.02.039

[19] Hyder M., Huang R. and Chen P.: J. Membrane Sci., 2009. 326, 343.
https://doi.org/10.1016/j.memsci.2008.10.014

[20] Idris A., Kormin F. and Noordin M.: Sep. Purif. Technol., 2006, 49, 271.
https://doi.org/10.1016/j.seppur.2005.10.010

[21] Garcia V. et al.: J. Membrane Sci., 2009, 338, 111.
https://doi.org/10.1016/j.memsci.2009.04.040

[22] Yuan H.-K. et al.: Desalination, 2011, 280, 252.
https://doi.org/10.1016/j.desal.2011.07.002

[23] Yongquan D. et al.: Desalination, 2012, 295, 53.
https://doi.org/10.1016/j.desal.2012.03.018

[24] Khayet M., Cojocaru C. and Zakrzewska-Trznadel G.: J. Membrane Sci., 2008, 321, 272.
https://doi.org/10.1016/j.memsci.2008.05.002

[25] Wee S., Tye C. and Bhatia S.: Sep. Purif. Technol., 2010, 71, 192.
https://doi.org/10.1016/j.seppur.2009.11.021