Degradation of Poly(3-hydroxybutyrate) and its Derivatives: Characterization and Kinetic Behavior

Anton Bonartsev1, 2, Arasha Boskhomdzhiev1, Vera Voinova1, 2, Taniana Makhina1, Vera Myshkina1, Sergey Yakovlev1, Irina Zharkova2, Elena Filatova, Anton Zernov1,2, Dmitry Bagrov2, Natalia Andreeva2, Alexander Rebrov4, Garina Bonartseva1, Alexey Iordanskii
Affiliation: 
1 A.N. Bach's Institute of Biochemistry, Russian Academy of Sciences, 33, Leninskiy prosp., 119071 Moscow, Russia 2 Faculty of Biology, Moscow State University, 1-12 Leninskie Gory, 119992 Moscow, Russia 3 N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4, Kosygin str., 119991 Moscow, Russia; aljordan08@gmail.com 4 A.V. Topchiev Institute of Petroleum Chemistry, 27, Leninskiy prosp., 119071 Moscow, Russia
DOI: 
https://doi.org/10.23939/chcht06.04.385
AttachmentSize
PDF icon full_text.pdf571.02 KB
Abstract: 
We focused on hydrolytic degradation kinetics at 310 and 343 K in phosphate buffer to compare PLA and PHB kinetic profiles. Besides, we revealed the kinetic behavior for copolymer PHBV (20 % of 3-hydroxyvalerate) and the blend PHB-PLA (1:1). The intensity of biopolymer hydrolysis is characterized by total weight lost and the viscosity-averaged molecular weight (MW) decrement. The degradation is enhanced in the series PHBV < PHB < PHB-PLA blend < PLA. Characterization of PHB and PHBV includes MW and crystallinity evolution (X-ray diffraction) as well as AFM analysis of PHB film surfaces before and after aggressive medium exposition. The important impact of MW on the biopolymer hydrolysis is shown .
References: 

[1] Sudesh K., Abe H. and Doi Y.: Progr. Polym. Sci., 2000, 25, 1503.
https://doi.org/10.1016/S0079-6700(00)00035-6

[2] Lenz R. and Marchessault R.: Biomacromolecules, 2005, 6, 1.
https://doi.org/10.1021/bm049700c

[3] Bonartsev A., Iordanskii A., Bonartseva G. and Zaikov G.: Polym. Res. J., 2008, 2, 127.

[4] Kadouri D., Jurkevitch E., Okon Y. and Castro-Sowinski S.: Critical Rev. in Microbiol., 2005, 31, 55.
https://doi.org/10.1080/10408410590899228

[5] Jendrossek D. and Handrick R.: Annual Rev. Microbiol., 2002, 56, 403.
https://doi.org/10.1146/annurev.micro.56.012302.160838

[6] Steinbuchel A. and Lutke-Eversloh T.: Biochem. Eng. J., 2003, 16, 81.
https://doi.org/10.1016/S1369-703X(03)00036-6

[7] Miller N. and Williams D.: Biomaterials, 1987, 8, 129.
https://doi.org/10.1016/0142-9612(87)90102-5

[8] Qu X., Wu Q., Zhang K. and Chen G.: Biomaterials, 2006, 27, 3540.

[9] Fostera L., Sanguanchaipaiwonga V., Gabelisha J. et al.: Polymer, 2005, 46, 6587.
https://doi.org/10.1016/j.polymer.2005.05.012

[10] Marois Y., Zhang Z., Vert M., et al.: J. Biomed. Mat. Res., 2000, 49, 216.
https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<216::AID-JBM9>3.0.CO;2-X

[11] Freier T., Kunze C., Nischan C. et al.: Biomaterials, 2002, 23, 2649.
https://doi.org/10.1016/S0142-9612(01)00405-7

[12] Doi Y., Kanesawa Y., Kawaguchi Y. and Kunioka M.: Macromol. Chem. Rapid. Commun., 1989, 10, 227.
https://doi.org/10.1002/marc.1989.030100506

[13] Renstadt R., Karlsson S. and Albertsson A.: Macromol Symp., 1998, 127, 241.
https://doi.org/10.1002/masy.19981270131

[14] Cheng M-L., Chen P-Y., Lan C-H. and Sun Y-M.: Polymer 2011, doi:10.1016/j.polymer.2011.01.039 in press.
https://doi.org/10.1016/j.polymer.2011.01.039

[15] Myshkina V., Nikolaeva D., Makhina T. et al.: Appl. Biochem. Microbiology, 2008, 44, 482.
https://doi.org/10.1134/S0003683808050050

[16] Myshkina V., Ivanov E., Bonartseva G. et al.: Appl. Biochem. Microbiology, 2010, 46, 289.
https://doi.org/10.1134/S0003683810030075

[17] Akita S., Einaga Y., Miyaki Y. and Fujita H.: Macromolecules, 1976, 9, 774.
https://doi.org/10.1021/ma60053a017

[18] Rebrov A., Dubinskii V., Nekrasov Y. et al.: Polymer Science (in Rus.), 2002, 44A, 347.

[19] Koyama N. and Doi Y.: Can. J. Microbiol., 1995, 41, 316.
https://doi.org/10.1139/m95-203

[20] Majid M., Ismail J., Few L. and Tan C.: Eur. Polym. J., 2002, 38, 837.
https://doi.org/10.1016/S0014-3057(01)00226-9

[21] Choi G., Kim H. and Rhee Y.: J. Microbiol., 2004, 42, 346.

[22] Iordanskii A., Rudakova T. and Zaikov G.: Interaction of Polymers with Corrosive and Bioactive Media. VSP, New York-Tokyo 1984.

[23] Wang H., Palmer H., Linhardt R. et al.: Biomaterials, 1990, 11, 679.
https://doi.org/10.1016/0142-9612(90)90026-M

[24] Kurcok P., Kowalczuk M., Adamus G. et al.: JMS-Pure Appl. Chem., 1995, A32, 875.

[25] Reusch R.: FEMS Microbiol. Rev., 1992, 103, 119.

[26] Molnar K., Moczo J., Murariu M. et al.: eXPRESS Polym. Lett., 2009, 3, 49.
https://doi.org/10.3144/expresspolymlett.2009.8

[27] Spyros A., Kimmich R., Briese B. and Jendrossek D.: Macromolecules, 1997, 30, 8218.
https://doi.org/10.1021/ma971193m

[28] Luizier W.: Proc. Natl. Acad. Sci. USA, 1992, 89, 839.
https://doi.org/10.1073/pnas.89.3.839

[29] Gao Y., Kong L., Zhang L. et al.: Eur. Polym. J., 2006, 42, 764.
https://doi.org/10.1016/j.eurpolymj.2005.09.028

[30] Pompe T., Keller K., Mothes G. et al.: Biomaterials, 2007, 28, 28.
https://doi.org/10.1016/j.biomaterials.2006.08.028

[31] Siepmann J., Siepmann F. and Florence A.: Int. J. Pharmac., 2006, 314, 101.
https://doi.org/10.1016/j.ijpharm.2005.07.027

[32] Zhang T., Fu Y., Bishop P. et al.: J. Hazardous Mat., 1995, 41, 267.
https://doi.org/10.1016/0304-3894(94)00118-Z