Degradation Assessment of Flexible Polyurethane Foam Composites Based on Palm Oil in Soil
Attachment | Size |
---|---|
full_text.pdf | 78.5 KB |
[1] Sarver, J.A.; Kiran, E. Foaming of Polymers with Carbon Dioxide – The Year-in-Review – 2019. J. Supercrit. Fluids 2021, 173, 105166. https://doi.org/10.1016/j.supflu.2021.105166
[2] Wang, C.S.; Zhang, J.; Wang, H.; He, M.; Ding, L.; Zhao, W.W. Simultaneously Improving the Fracture Toughness and Flame Retardancy of Soybean Oil-based Waterborne Polyurethane Coatings by Phosphorus-Nitrogen Chain Extender. Ind. Crops Prod. 2021, 163, 113328. https://doi.org/10.1016/j.indcrop.2021.113328
[3] Kaikade, D.S.; Sabnis, A.S. Polyurethane Foams from Vegetable Oil-Based Polyols: A Review. Polym. Bull. 2023, 80, 2239–2261. https://doi.org/10.1007/s00289-022-04155-9
[4] Umerzakova, M.; Jumadilov, T.; Kondaurov, R.; Sarieva, R. Compositions of Arylalicyclic Copolyimide with Alkylated Monthmorillonite. Chem. Chem. Technol. 2023, 17, 601–607. https://doi.org/10.23939/chcht17.03.601
[5] Neswati; Nazir, N.; Arief, S.; Yusniwati. Improvement of Flexible Polyurethane Foam Characteristics of Palm Oil Polyols with the Addition of Polyethylene Glycol-400. IOP Conf. Ser. Earth Environ. Sci. 2023, 1228, 012031. https://doi.org/10.1088/1755-1315/1228/1/012031
[6] Neswati, N.; Nazir, N.; Arief, S.; Yusniwati, Y. Synthesis of Flexible Polyurethane Foam Based on Palm Oil with Enhanced Characteristics. Egypt. J. Chem. 2024, 67, 231–238. https;//doi.org/10.21608/ejchem.2023.187399.7463
[7] Suk, M.; Lorenz, S.; Kümmerer, K. Identification of Environmentally Biodegradable Scaffolds for the Benign Design of Quinolones and Related Substances. Sustain. Chem. Pharm. 2023, 31, 100947. https://doi.org/10.1016/j.scp.2022.100947
[8] Skleničková, K.; Abbrent, S.; Halecký, M.; Kočí, V.; Beneš, H. Biodegradability and Ecotoxicity of Polyurethane Foams: A Review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 157–202. https://doi.org/10.1080/10643389.2020.1818496
[9] El Awady, M.E.; Asker, M.S.; Haggag, K.M.; Abd-Elaziz, A.M.; El-Shall, F.N. Chemical and Biological Assay for the Degradation of Microwave Synthesized-Hyperbranched Poly (Urethane-Urea) by Local Bacterial Isolates. Egypt. J. Chem. 2022, 65, 297–305. https://doi.org/10.21608/EJCHEM.2021.81877.4042
[10] Matsumiya, Y.; Murata, N.; Tanabe, E.; Kubota, K.; Kubo, M. Isolation and Characterization of an Ether-Type Polyurethane-Degrading Micro-Organism and Analysis of Degradation Mechanism by Alternaria sp. J. Appl. Microbiol. 2010, 108, 1946–1953. https://doi.org/10.1111/j.1365-2672.2009.04600.x
[11] Cosgrove, L.; McGeechan, P.L.; Robson, G.D.; Handley, P.S. Fungal Communities Associated with Degradation of Polyester Polyurethane in Soil. Appl. Environ. Microbiol. 2007, 73, 5817–5824. https://doi.org/10.1128/AEM.01083-07
[12] Naureen, B.; Haseeb, A.S.M.A.; Basirun, W.J.; Muhamad, F. Synthesis and Degradation of 3D Biodegradable Polyurethane Foam Scaffolds Based on Poly (Propylene Fumarate) and poly[(R)-3-Hydroxybutyrate]. Mater. Today Commun. 2021, 28, 102536. https://doi.org/10.1016/j.mtcomm.2021.102536
[13] Xu, C.; Hong, Y. Rational Design of Biodegradable Thermoplastic Polyurethanes for Tissue Repair. Bioact. Mater. 2022, 15, 250–271. https://doi.org/10.1016/j.bioactmat.2021.11.029
[14] Zafar, U.; Houlden, A.; Robson, G.D. Fungal Communities Associated with the Biodegradation of Polyester Polyurethane Buried under Compost at Different Temperatures. Appl. Environ. Microbiol. 2013, 79, 7313–7324. https://doi.org/10.1128/AEM.02536-13
[15] Kemona, A.; Piotrowska, M. Polyurethane Recycling and Disposal: Methods and Prospects. Polymers (Basel) 2020, 12, 1752. https://doi.org/10.3390/POLYM12081752
[16] Skleničková, K.; Pečenka, M.; Říhová Ambrožová, J.; Abbrent, S.; Vlčková, V.; Beneš, H.; Halecký, M. Influence of Biodegradable Polyurethane Foam on Biocoenosis and Sludge Activity in Reactors Simulating Low-Load Wastewater Treatments. J. Water Process Eng. 2021, 44, 102455. https://doi.org/10.1016/j.jwpe.2021.102455
[17] Ali, A.; Ul Amin, B.; Yu, W.; Gui, T.; Cong, W.; Zhang, K.; Tong, Z.; Hu, J.; Zhan, X.; Zhang, Q. Eco-Friendly Biodegradable Polyurethane Based Coating for Antibacterial and Antifouling Performance. Chinese J. Chem. Eng. 2023, 54, 80–88. https://doi.org/10.1016/j.cjche.2022.09.004
[18] Guo, Y.; An, X.; Qian, X. Biodegradable and Reprocessable Cellulose-Based Polyurethane Films for Bonding and Heat Dissipation in Transparent Electronic Devices. Ind. Crops Prod. 2023, 193, 116247. https://doi.org/10.1016/j.indcrop.2023.116247
[19] Razimowicz, M.; Gnatowski, P.; Szarlej, P.; Piłat, E.; Sienkiewicz, M.; Kucińska-Lipka, J. Developing Materials for Biodegradable Otolaryngological Stents. Chem. Chem. Technol. 2023, 17, 24–34. https://doi.org/10.23939/chcht17.01.024
[20] Burelo, M.; Gaytán, I.; Loza-Tavera, H.; Cruz-Morales, J.A.; Zárate-Saldaña, D.; Cruz-Gómez, M..J.; Gutiérrez, S. Synthesis, Characterization and Biodegradation Studies of Polyurethanes: Effect of Unsaturation on Biodegradability. Chemosphere 2022, 307, 136136. https://doi.org/10.1016/j.chemosphere.2022.136136
[21] Jia, P.; Ma, C.; Lu, J.; Yang, W.; Jiang, X.; Jiang, G.;, Yin, Z.; Qiu, Y.; Qian, L.; Yu, X.; et al. Design of Copper Salt@Graphene Nanohybrids to Accomplish Excellent Resilience and Superior Fire Safety for Flexible Polyurethane Foam. J. Colloid Interface Sci. 2022, 606, 1205–1218. https://doi.org/10.1016/j.jcis.2021.08.139
[22] Xu, C.; Qu, Z.; Tan, Z.; Nan, B.; Meng, H.; Wu, K. High-Temperature Resistance and Hydrophobic Polysiloxane-Based Polyurethane Films with Cross-Linked Structure Prepared by the Sol-Gel Process. Polym. Test. 2020, 86, 106485. https://doi.org/10.1016/j.polymertesting.2020.106485
[23] Kumar, S.; Prakash, R.; Maiti, P. Redox Mediation through Integrating Chain Extenders in Active Ionomer Polyurethane Hard Segments in CdS Quantum Dot Sensitized Solar Cell. Sol. Energy 2022, 231, 985–1001. https://doi.org/10.1016/j.solener.2021.12.043