Crystallography of Coaxial and Scroll Nanotubes of Arbitrary Composition

Oleg Figovsky1, Dmitry Pashin2, Zufar Khalitov2 and Diana Valeeva2
Affiliation: 
1International Nanotechnology Research Center “Polymate”, Migdal Haemek 23100, Israel 2Kazan National Research Technical University, 10, K. Marx str., 420111 Kazan, Tatarstan, Russia; pashin@addnano.ru
DOI: 
https://doi.org/10.23939/chcht09.01.019
AttachmentSize
PDF icon full_text.pdf242.37 KB
Abstract: 
Cylindrical coordinates of atoms of multilayer nonchiral, chiral and scroll nanotubes of arbitrary composition are developed by projecting the structure of plane analogue on corresponding surface. The coaxial and spiral cylindrical lattices, Bravais cells and chiral indexes, expressed in terms of these cells, are used for description of nanotubes structure. The model of multilayer chiral nanotube with not close packed layers is proposed.
References: 

[1] Bates T., Sand L. and Mink J.: Science, 1950, 111, 512.
https://doi.org/10.1126/science.111.2889.512

[2] Noll W. and Kircher H.: N. Jb. Min. Mh., 1951, 219.

[3] Noll W. and Kircher H.: Naturwissenschaften, 1952, 39, 223.

[4] Whittaker E.: Acta Cryst., 1955, 8, 571.
https://doi.org/10.1107/S0365110X55001771

[5] Whittaker E.: Acta Cryst., 1954, 7, 827.
https://doi.org/10.1107/S0365110X5400254X

[6] Jagodzinski H. and Kunze G.: N. Jb. Min. Mh., 1954, 95.

[7] Nasyrov I., Pashin D., Khalitov Z. and Valeeva D.: Sci. Israel – Techn. Adv., 2010, 12, 63.

[8] Lambin Ph. and Lucas A.: Phys. Rev. B, 1997, 56, 3571.
https://doi.org/10.1103/PhysRevB.56.3571

[9] Qin L.: Phys. Chem. Chem. Phys., 2007, 9, 31.
https://doi.org/10.1039/B614121H

[10] Iijima S. and Ichihashi T.: Nature, 1993, 363, 603.
https://doi.org/10.1038/363603a0

[11] Radovsky G., Popovitz-Biro R., Staiger M. et al.: Angew. Chem, Intl. Ed. 2011, 50, 12316.
https://doi.org/10.1002/anie.201104520

[12] Galimov E. and Khalitov Z.: Modelirovanie Difrakcii Nanotrubkami. Kazan Gos. Techn. Univ., Kazan 2007.