Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Compositions of Arylalicyclic Copolyimide with Alkylated Monthmorillonite

Maira Umerzakova1, Talkybek Jumadilov1, Ruslan Kondaurov1, Rakhima Sarieva1
Affiliation: 
1 JSC "Institute of chemical sciences after A.B. Bekturov" 106 Sh. Valikhanov St., Almaty 050010, the Republic of Kazakhstan jumadilovtalkybek@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.03.601
AttachmentSize
PDF icon full_text.pdf352.34 KB
Abstract: 
The results of studies on the preparation and study of the properties of composite materials based on compositions of arylalicyclic copolyimide and alkylated montmorillonite (AMM) modified with polyethylene glycol to increase the affinity of a natural mineral to polymer matrix are presented in the work. It was found that an increase in the compatibility of composition’s components is due to the addition to copolyimide solution of previously prepared mixture of alkylated montmorillonite in 5 % and 2 % polyethylene glycol solution in methylpyrrolidone. Based on IR-spectroscopy of the obtained mixtures and literature data, an assumption about specified composition mechanism was made. Compounds of copolyimide compositions with modified montmorillonite were determined. Found that the total content of alkylated montmorillonite and polyethylene glycol should not exceed 12.5 wt. % in the case of copolyimide – 1 wt. % and in case of copolyimide-2 – 4 wt. %. The optimal conditions for obtaining on their basis transparent composite films with a smooth surface by a mechanical mixing method are found. Their basic thermodestructive and mechanical properties were determined. It was shown that the materials have high thermodestructive and strength properties: the temperature of decomposition onset is 409-421°C, the tensile strength is in the range of 140-168 MPa. The best thermodestructive properties and tensile strength are possessed by films obtained from ternary mixtures of the initial composition 87.5 SPI1 + 7 PEG + 5.5 AMM and 97 SPI2 + 2 PEG + 1 AMM, while the elasticity of the material remained at an acceptable level.
References: 

[1] Leszczyńska, A.; Njuguna, J.; Pielichowski, K.; Banerjee, J.R. Polymer/Montmorillonite Nanocomposites with Improved Thermal Properties: Part I. Factors Influencing Thermal Stability and Mechanisms of Thermal Stability Improvement. Thermochim. Acta 2007, 453, 75-96. https://doi.org/10.1016/j.tca.2006.11.002
https://doi.org/10.1016/j.tca.2006.11.002

[2] Jumadilov, T.; Yskak, L.; Imangazy, A.; Suberlyak, O. Ion Exchange Dynamics in Cerium Nitrate Solution Regulated by Re-motely Activated Industrial Ion Exchangers. Materials 2021, 14, 3491. https://doi.org/10.3390/ma14133491
https://doi.org/10.3390/ma14133491

[3] Shin, H.I.,; Chang, J.-H. Transparent Polyimide/Organoclay Nanocomposite Films Containing Different Diamine Monomers. Polymers 2020, 12, 135. https://doi.org/10.3390/polym12010135
https://doi.org/10.3390/polym12010135

[4] Imangazy, A.; Smagulova, G.; Kaidar, B.; Mansurov, Z.; Kerimkulova, A.; Umbetkaliev, K.; Zakhidov, A.; Vorobyev, P.; Jumadilov, T. Compositional Fibers Based on Coal Tar Mesophase Pitch Obtained by Electrospinning Method. Chem. Chem. Technol. 2021, 15, 403-407. https://doi.org/10.23939/chcht15.03.403
https://doi.org/10.23939/chcht15.03.403

[5] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14, 312-317. https://doi.org/10.23939/chcht14.03.312
https://doi.org/10.23939/chcht14.03.312

[6] Nesterivska, S.; Makogon, V.; Yatsyshyn, M.; Saldan, I.; Reshetnyak, O.; German, N.; Stadnyk, Y. Properties of the Compo-sites Made of Glauconite and Polyaniline in Aqueous Solutions of

Phosphoric Acid. Chem. Chem. Technol. 2020, 14, 487-495. https://doi.org/10.23939/chcht14.04.487
https://doi.org/10.23939/chcht14.04.487

[7] Bratychak, M.; Astakhova, O.; Shyshchak, O. Epoxy Composites Filled with Natural Calcium Carbonate. 3. Epoxy Composites Obtained in the Presence of Monocarboxylic Derivative of Epidian-6 Epoxy Resin. Chem. Chem. Technol. 2020, 14, 504-513. https://doi.org/10.23939/chcht14.04.504
https://doi.org/10.23939/chcht14.04.504

[8] Sroog, C.E. Polyimides. Prog. Polym. Sci. 1991, 16, 561-694. https://doi.org/10.1016/0079-6700(91)90010-i
https://doi.org/10.1016/0079-6700(91)90010-I

[9] Tsai, C.-L.; Yen, H.-J.; Liou, G.-S. Highly Transparent Po-lyimide Hybrids for Optoelectronic Applications. React. Funct. Polym. 2016, 108, 2-30. https://doi.org/10.1016/j.reactfunctpolym.2016.04.021
https://doi.org/10.1016/j.reactfunctpolym.2016.04.021

[10] Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in Polyimide-Based Materials for Space Appli-cations. Adv. Mater. 2019, 31, 1807738. https://doi.org/10.1002/adma.201807738
https://doi.org/10.1002/adma.201807738

[11] Umerzakova, M.B.; Donenov, B.K.; Kainarbaeva, Z.N.; Kartay, A.M.; Sarieva, R.B. Pilot Production of Spirulina Biomass and Obtaining of Novel Biodegradable Surfactants. Eurasian Che-mico-Technological Journal 2020, 22, 219-226.
https://doi.org/10.18321/ectj973

[12] Matsumoto, T.; Ishiguro, E.; Nakagama, S.J. Alicyclic Polyi-mides Derived from Alkanone bis-Spironorbornanetetracarboxylic Dianhydrides. J. Photopolym. Sci. Technol. 2013, 26, 361-365.
https://doi.org/10.2494/photopolymer.26.361

[13] Umerzakova, M.B.; Kravtsova, V.D.; Sarieva, R.B.; Yespen-betov, A.S. Kompozytsii na osnove alitsyklicheskoho sopoliimida i alkilirovannoho montmorillonita. Khimicheskii zhurnal Kazakhsta-na 2020, 2, 198.

[14] Umerzakova, M.B.; Kravtsova, V.D.; Sarieva, R.B. Izuchenie svoistv kompozytsii na ocnove sopoliimidov s dobavkami alkiliro-vannoho montmorillonita. Khimicheskii zhurnal Kazakhstana 2020, 3, 107.

[15] Umerzakova, M.; Sarieva, R.; Yespenbetov, A.; Kainarbaye-va, Z. Composition Based on Alicyclic Copolymide and Polyethy-lene Terephthalate. Chemical Bulletin of Kazakh National Universi-ty 2022, 104, 12-21. https://doi.org/10.15328/cb1248
https://doi.org/10.15328/cb1248

[16] Cheng, C.-F.; Cheng, H.-H.; Cheng, P.-W.; Lee, Y.-J. Effect of Reactive Channel Functional Groups and Nanoporosity of Na-noscale Mesoporous Silica on Properties of Polyimide Composite. Macromolecules 2006, 39, 7583-7590. https://doi.org/10.1021/ma060990u
https://doi.org/10.1021/ma060990u

[17] Zhubanov, B.A.; Umerzakova M.B.; Kravtsova, V.D.; Iska-kov, P.M.; Boiko, H.I.; Mukhamedova, R.F.; Almabekov, О.А.; Zainullina, A.Sh.; Sarieva, R.B. Kataliticheskii sintez alitsykli-cheskikh poliimidov. Khimicheskii zhurnal Kazakhstana 2018,

4, 304.

[18] Umerzakova, M.B.; Kravtsova, V.D.; Sarieva, R.B., Kainar-bayeva Zh.N. Kompozitsionnye materialy na osnove arilalitsikli-cheskoho sopoliimida s dobavkami polietilenhlikolya. Khimicheskii zhurnal Kazakhstana 2018, 2, 165.

[19] Bekturov, E.; Tolendina, A.; Shaikhutdinov, Y.; Dzhumadi-lov, T. Complexation of poly(Ethylene glycol) with Some Salts of Alkali-Earth Metals. Polym. Adv. Technol. 1993, 4, 564-566. https://doi.org/10.1002/pat.1993.220040907
https://doi.org/10.1002/pat.1993.220040907

[20] Al-Sahly, M.; El-Hamshary, H.; Al-Deyab, S.S. Impact of Chain Length on Release Behavior of Modified Polyethylene Gly-col Intercalated-Montmorillonite Nanocomposite. J. Nanosci. Nano-technol. 2020, 20, 5546-5554. https://doi.org/10.1166/jnn.2020.17860
https://doi.org/10.1166/jnn.2020.17860

[21] Satoh, A.; Morikawa, A. Synthesis and Characterization of Aromatic Polyimides containing Trifluoromethyl Group from Bis(4-amino-2-trifluoromethylphenyl)ether and Aromatic Tetracarboxylic Dianhydrides. High Perform. Polym. 2010, 22, 412. https://doi.org/10.1177/0954008309336324
https://doi.org/10.1177/0954008309336324

[22] Kamunur, K.; Jandosov, J.; Abdulkarimova, R.; Hori, K.; Yelemessova, Zh.K. Combustion Study of Different Transitional Metal Oxide based on AN/MgAl Composites Gas Generators. Eurasian Chemico-Technological Journal 2017, 19, 341-346. https://doi.org/10.18321/ectj682
https://doi.org/10.18321/ectj682