Comparative Dynamic Characteristics of Electrospun Ultrathin Fibers and Films Based on Poly(3-hydroxybutyrate)

Olga Staroverova1, Svetlana Karpova1, Alexey Iordanskii1, Anatoliy Olkhov1,2, Anatoliy Khvatov1, Alexandru Mihai Grumezescu3, Natalia Kildeeva4, Marina Artsis1 and Gennady Zaikov1
1General Institute of Chemical Physics of Russian Academy of Sciences, 4 Kosygin St., 119991 Moscow, Russian Federation;, 2G. Plekhanov Russian University of Economics, 9 Stremyannoy Ln., 117997 Moscow, Russian Federation; 3University Politehnica of Bucharest, 1-7 Polizu str., 011061 Bucharest, Romania; 4Moscow State Institute of Design and Technology, 1 Malaya Kaluzhskaya St., 119071 Moscow, Russian Federation;
PDF icon full_text.pdf932.7 KB
The dynamic of polymer chains for electrospun poly(3-hydroxybutyrate) (PHB) fibers and the PHB films was studied with spin probe characteristics obtained by ESR technique. The ESR data combined with DSC analysis reveal the presence of two TEMPO probe populations with different correlation times indicating the heterogeneous structure of intercrystalline areas in the films, fibers and the cold rolled fiber mats. The ESR data are in agreement with the 2-mode model of amorphous state in semicrystalline polymers. The difference in peak intensities shows that effective correlation time in the electrospun fibers exceeds the same characteristic in the film, that also indicates the slower molecular mobility in the low-dense amorphous fraction of PHB fibers as compared to the film. The impact of potential aggressive factors such as water, temperature and ozone upon probe mobility allows suggesting that both the fiber electrospinning and the cold-rolling procedure lead to rearrangement in the intercrystalline fields of PHB that contribute to the progress in the fiber stabilization against the aggressive factors.

[1] Bhardwaj N. and Kundu S.: Biotechn. Adv., 2010, 28, 325.

[2] Baji A., Mai Y-W., Wong S-C. et al.: Compos. Sci. Technol., 2010, 70, 703.

[3] Raghavan P., Lim D-H., Ahn J-H. et al.: React. Funct. Polym., 2012, 72, 915.

[4] Palangetic L., Reddy N., Srinivasan S. et al.: Polymer, 2014, 55, 4920.

[5] Iordanskii A., Bonartseva G., Pankova Yu. et al.: Current Status and Biomedical Application Spectrum of Poly(3- Hydroxybutyrate as a Bacterial Biodegradable Polymer V. I, Ch. 12 [in:] Balkose D., Horak D. and Soltes L. (Eds.), Current State-of-the-Art on Novel Materials. Apple Academic Press, New York 2014, p. 450.

[6] Shchegolikhin A., Iordanskii A., Filatova A. et al.: J. Polym Eng., 2011, 31, 283.

[7] Bonartsev A., Livshits V., Makhina T. et al.: eXPRESS Polym. Lett., 2007, 1, 797.

[8] Ivantsova E., Iordanskii A., Kosenko R. et al.: Chem. Pharmaceut. J., 2011, 45, 39.

[9] Corre Y-M., Bruzaud S., Audic J.-L. and Grohens Y.: Polymer Testing, 2012, 31, 226.

[10] Chanprateep S.: J. Biosci. Bioeng., 2010, 110, 621.

[11] Galeski A.: Progr. Polym. Sci., 2003, 28, 1643.

[12] Pluta M., Bartczak Z. and Galeski A.: Polymer, 2000, 41, 2271.

[13] Ma Q., Mao B. and Cebe P.: Polymer, 2011, 52, 3190; doi:10.1016/j.polymer.2011.05.015.

[14] Karpova S., Iordanskii A., Popov A. et al.: Rus. J. Phys. Chem. B, 2012, 6, 72.

[15] Filatov Y., Budyka A. and Kirichenko V.: Electrospinning of Micro- and Nanofibers: Fundamentals in Separation and Filtration Processes. Begell House Inc., New York 2007.

[16] Vlasov S. and Olkhov A.: Plast. Massy, 1996, 6, 40.

[17] Vasserman A., Buchachenko A., Kovarskii A. and Neiman M.: Vysokomol. Soedin. A, 1968, 10, 1930.

[18] Staroverova O., Shushkevich A., Kuzmicheva G. et al.: Tekhn. Zhivykh System, 2013, 10, 74.

[19] Rutledge G. and Fridrikh S.: Adv. Drug Deliv. Rev., 2007, 59, 1384.

[20] Kamaev P., Aliev I., Iordanskii A. and Wasserman A.: Polymer, 2000, 42, 515.

[21] Di Lorenzo M., Gazzano M. and Righetti M.: Macromolecules, 2012, 45, 5684;

[22] Di Lorenzo M. and Righetti M.: J. Therm. Anal. Calorim. on line. DOI 10.1007/s10973-012-2734-3.

[23] Iordanskii A., Kamaev P. and Zaikov G.: Int. J. Polymer. Mater., 1998, 41, 55.