Clay Enriched With Ca2+ and Cu2+ As the Catalyst for the Production of Methyl Esters from CPO on a Laboratory Scale
Attachment | Size |
---|---|
full_text.pdf | 337.76 KB |
[1] Jiménez-Gómez, C.P.; Cecilia, J.A.; Moreno-Tost, R.; Maireles-Torres, P. Selective Furfural Hydrogenation to Furfuryl Alcohol using Cu-based Catalysts Supported on Clay Minerals. Top. Catal. 2017, 4. https://doi.org/10.1007/s11244-017-0804-2. (accessed Aug. 20, 2020)
https://doi.org/10.1007/s11244-017-0804-2
[2] Leung, D.Y.C; Wu, X.; Leung, M.K.H. A Review on Biodiesel Production Using Catalyzed Transesterification. Appl. Energy 2010, 87, 1083-1095. https://doi.org/10.1016/j.apenergy.2009.10.006
https://doi.org/10.1016/j.apenergy.2009.10.006
[3] Jia, L.; Li, Y.; Chen, J.; Guo, X.; Lou, S.; Duan, H. Montmorillonite-Supported KF/CaO: A New Solid Base Catalyst for Biodiesel Production. Res. Chem. Intermed. 2016, 42, 1791-1807. https://doi.org/10.1007/s11164-015-2118-y
https://doi.org/10.1007/s11164-015-2118-y
[4] Dang, H.T.; Chen, B.-H.; Lee, D.-J. Optimization of Biodiesel Production from Transesterification of Triolein Using Zeolite LTA Catalysts Synthesized from Kaolin Clay. J. Taiwan Inst. Chem. Eng. 2017, 79, 14-22. https://doi.org/10.1016/j.jtice.2017.03.009
https://doi.org/10.1016/j.jtice.2017.03.009
[5] Man. Z.; Elsheikh, Y.A.; Bustam, M.A.; Yusup, S.; Mutalib, M.I.A.; Muhammad, N. A Bronsted Ammonium Ionic Liquid-KOH Two-Stage Catalyst for Biodiesel Synthesis from Crude Palm Oil. Ind. Crops Prod. 2012, 41, 144-149. https://doi.org/10.1016/j.indcrop.2012.04.032
https://doi.org/10.1016/j.indcrop.2012.04.032
[6] Olutoye, M.A.; Wong, S.W.; Chin, L.H.; Amani, H.; Asif, M.; Hameed, B.H. Synthesis of Fatty Acid Methyl Esters via the Transesterification of Waste Cooking Oil by Methanol with a Barium-Modified Montmorillonite K10 Catalyst. Renew. Energy 2015, 86, 392-398. https://doi.org/10.1016/j.renene.2015.08.016
https://doi.org/10.1016/j.renene.2015.08.016
[7] Castro, C.S.; Garcia Jr., L.C.F.; Assaf, J.M. The Enhanced Activity of Ca/MgAl Mixed Oxide for Transesterification. Fuel Process. Technol. 2014, 125, 73-78. https://doi.org/10.1016/j.fuproc.2014.03.024
https://doi.org/10.1016/j.fuproc.2014.03.024
[8] Soetaredjo, F.E.; Ayucitra, A.; Ismadji, S.; Maukar, A.L. KOH/Bentonite Catalysts for Transesterification of Palm Oil to Biodiesel. Appl. Clay Sci. 2011, 53, 341-346. https:/doi.org/10.1016/j.clay.2010.12.018
https://doi.org/10.1016/j.clay.2010.12.018
[9] Abukhadra, M.R.; Ibrahim, S.M.; Yakout, S.M.; El-Zaidy, M.E.; Abdeltawab, A.A. Synthesis of Na+ Trapped Bentonite/Zeolite-P Composite as a Novel Catalyst for Effective Production of Biodiesel from Palm Oil; Effect of Ultrasonic Irradiation and Mechanism. Energy Convers. Manag. 2019, 196, 739-750. https://doi.org/10.1016/j.enconman.2019.06.027
https://doi.org/10.1016/j.enconman.2019.06.027
[10] Vellayan, K.;González, B.; Trujillano, R.; Vicente, M.A.; Gil, A. Pd Supported on Cu-Doped Ti-Pillared Montmorillonite as Catalyst for the Ullmann Coupling Reaction. Appl. Clay Sci. 2018, 160, 126-131. https://doi.org/10.1016/j.clay.2017.12.037
https://doi.org/10.1016/j.clay.2017.12.037
[11] Munir, M.; Ahmad, M.; Saeed, M.; Waseem, A.; Rehan, M.; Nizami, A.-S.; Zafar, M.; Arshad, M.; Sultana, S. Sustainable Production of Bioenergy from Novel Non-Edible Seed Oil (Prunuscerasoides) Using Bimetallic Impregnated Montmorillonite Clay Catalyst. Renew. Sust. Energ. Rev. 2019, 109, 321-332. https://doi.org/10.1016/j.rser.2019.04.029
https://doi.org/10.1016/j.rser.2019.04.029
[12] Katkar, S.S.; Kategaonkar, A.H.; Vidhate K.N. MgO Supported Al2O3 Oxide: A New, Efficient, and Reusable Catalyst for Synthesis of Chalcones. Chem. Chem. Technol. 2020, 14 (2), 169-176. https://doi.org/10.23939/chcht14.02.169
https://doi.org/10.23939/chcht14.02.169
[13] Nugroho, W. S. K.; Suseno, A.; Priyono, P. Pengaruh Temperatur Kalsinasi pada Modifikasi Lempung dengan Oksida Aluminium sebagai Pemilar. Jurnal Kimia Sains dan Aplikasi 2014, 17 (2), 43-47. https://doi.org/10.14710/jksa.17.2.43-47
https://doi.org/10.14710/jksa.17.2.43-47
[14] McMurdie, H.F.; Morris, M.C.; Evans, E.H.; Paretzkin, B.; Wong-Ng, W.; Ettlinger, L.; Hubbard, C.R. Standard X-Ray Diffraction Powder Patterns from the JCPDS Research Associateship. Powder Diffr. 1986, 1 (2), 64-77. https://doi.org/10.1017/S0885715600011593
https://doi.org/10.1017/S0885715600011593
[15] Antic, B.; Kremenovic, A.; Nikolic, A.S.; Stoiljkovic, M. Cation Distribution and Size-Strain Microstructure Analysis in Ultrafine Zn−Mn Ferrites Obtained from Acetylacetonato Complexes. J. Phys. Chem. B 2004, 108, 12646-12651. https://doi.org/10.1021/jp036214v
https://doi.org/10.1021/jp036214v
[16] Tsipurski, S.I.; Drits, V.A. The Distribution of Octahedral Cations in the 2:1 Layers of Dioctahedral Smectites Studied by Oblique-Texture Electron Diffraction. Clay Miner. 1984, 19, 177-193. https://doi.org/10.1180/claymin.1984.019.2.05
https://doi.org/10.1180/claymin.1984.019.2.05
[17] Drits, V.A.; Zviagina, B.B.; McCarty, D.K., Salyn, A.L. Factors Responsible for Crystal-Chemical Variations in the Solid Solutions from Illite to Aluminoceladonite and from Glauconite to Celadonite. Am. Mineral. 2010, 95 (2-3), 348-361. https://doi.org/10.2138/am.2010.3300
https://doi.org/10.2138/am.2010.3300
[18] Neder, R.B.; Burghammer, M.; Grasl, Th.; Schulz, H.; Bram, A.; Fiedler, S. Refinement of the Kaolinite Structure from Single-Crystal Synchrotron Data. Clays Clay Miner. 1999, 47, 487-494. https://doi.org/10.1346/CCMN.1999.0470411
https://doi.org/10.1346/CCMN.1999.0470411
[19] Chakraborty, A.K. Phase Transformation of Kaolinite Clay [Online]; Springer Nature, 2014. https://link.springer.com/book/10.1007%2F978-81-322-1154-9 (accessed July 17, 2020).
[20] Djomgoue, P.; Njopwouo, D. FT-IR Spectroscopy Applied for Surface Clays Characterization. J. Surf. Mater. Adv. Technol. 2013, 3 (4), 275-282. https://doi.org/10.4236/jsemat.2013.34037
https://doi.org/10.4236/jsemat.2013.34037
[21] Naderi, M. Chapter Fourteen - Surface Area: Brunauer-Emmett-Teller (BET). In Progress in Filtration and Separation; Tarleton, S., Eds.; Academic Press: UK, 2015; pp 586-608. https://doi.org/10.1016/b978-0-12-384746-1.00014-8
https://doi.org/10.1016/B978-0-12-384746-1.00014-8
[22] Housecrift, C.; Sharpe, A.J. Inorganic Chemistry, 2nd edn.; Pearson: London, 2005.
[23] Puhan, S.; Saravanan, N.; Nagarajan, G.; Vedaraman, N. Effect of Biodiesel Unsaturated Fatty Acid on Combustion Characteristics of a DI Compression Ignition Engine. Biomass Bioenergy 2010, 34, 1079-1088. https://doi.org/10.1016/j.biombioe.2010.02.017
https://doi.org/10.1016/j.biombioe.2010.02.017