Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Chromium(VI) Removal Using Activated Thuja Occidentalis Leaves Carbon Powder – Adsorption Isotherms and Kinetic Studies

Vaddi Dhilleswara Rao1, Mushini Venkata Subba Rao1, M.P.S.Murali Krishna2
Affiliation: 
1 G M R Institute of Technology, affiliated to JNTUK, Rajam, A.P, India 2 Department of Chemistry, Andhra Polytechnic, Kakinada 533003, A.P, India  dhilleswararao.v@gmrit.org
DOI: 
https://doi.org/10.23939/chcht14.03.362
AttachmentSize
PDF icon full_text.pdf613.89 KB
Abstract: 
This study investigates the capability of Thuja occidentalis leaves carbon powder (TOLC) as a viable adsorbent for the expulsion of chromium(VI) from aqueous solutions. By batch mode, the removal percentage of Cr(VI) is observed to be pH perceptive and furthermore relies upon the time of equilibration, amount of the TOLC adsorbent and Cr(VI) concentration. TOLC adsorbent before and after adsorption of Cr(VI) was characterized with FTIR, SEM and EDX. Adsorption isotherm results divulge that the Langmuir model was a better fit. The kinetic studies divulge that the pseudo-second-order model was the best fit. TOLC adsorbent can be easily regenerated and utilised for several adsorption/desorption cycles.
References: 

[1] Djebbar M., Djafri F.: Chem. Chem. Technol., 2018, 12, 272. https://doi.org/10.23939/chcht12.02.272
[2] Mehdipour S., Vatanpour V., Kariminia H.: Desalination, 2015, 362, 84. https://doi.org/10.1016/j.desal.2015.01.030
[3] Skiba E., Kobyłecka J., Wolf W.: Environ. Pollut., 2017, 220B, 882. https://doi.org/10.1016/j.envpol.2016.10.072
[4] Wu L., Liao L., Lv G. et al.: J. Hazard. Mater., 2013, 254, 277. https://doi.org/10.1016/j.jhazmat.2013.03.009
[5] Lv X., Xu J., Jiang G. et al.: J. Colloid Interface Sci., 2012, 369, 460. https://doi.org/10.1016/j.jcis.2011.11.049
[6] Cheng Q., Wang C., Doudrick K., Chan C.: Appl. Catal. B, 2015, 176-177, 740. https://doi.org/10.1016/j.apcatb.2015.04.047
[7] Sharma D., Forster C.: Bioresour. Technol., 1995, 52, 261. https://doi.org/10.1016/0960-8524(95)00035-D
[8] Focardi S., Pepi M., Focardi S.: Microbial Reduction of Hexavalent Chromium as a Mechanism of Detoxification and Possible Bioremediation Applications. [in:] R. Chamy (Ed.), Biodegradation – Life of Science. InTechOpen 2013. https://doi.org/10.5772/56365
[9] Miretzky P., Cirelli A.: J. Hazard. Mater., 2010, 180, 1. https://doi.org/10.1016/j.jhazmat.2010.04.060
[10] Hsu N-H., Wang S-L., Liao Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
[11] Sereshti H., Farahani M., Baghdadi M.: Talanta, 2016, 146, 662. https://doi.org/10.1016/j.talanta.2015.06.051.
[12] Crisostomo C., Lima F., Dias R. et al.: Water Air Soil Pollut., 2016, 227, 51. https://doi.org/10.1007/s11270-016-2747-9
[13] Teh C., Budiman P., Shak K., Wu T.: Ind. Eng. Chem. Res., 2016, 55, 4363. https://doi.org/10.1021/acs.iecr.5b04703
[14] Kazeminezhad I., Mosivand S.: J. Magn. Magn. Mater., 2017, 422, 84. https://doi.org/10.1016/j.jmmm.2016.08.049
[15] Ronda A., Della Zassa M., Martín-Lara M. et al.: J. Hazard. Mater., 2016, 308, 285. https://doi.org/10.1016/j.jhazmat.2016.01.045
[16] Choi K., Lee S.., Ock J. et al.: Nature, 2018, 8, 1438. https://doi.org/10.1038/s41598-018-20017-9
[17] Guo Z., Zhang J., Liu H., Kang Y.: Powder Technol., 2017, 318, 459. https://doi.org/10.1016/j.powtec.2017.06.024
[18] Huang M., Wang Z., Liu S.: J. Environ. Chem. Eng., 2016, 4, 1555. https://doi.org/10.1016/j.jece.2016.02.019
[19] Shashikant M., Trupti Nagendra P.: J. Inst. Eng. India Ser. A, 2015, 96, 237. https://doi.org/10.1007/s40030-015-0124-0
[20] Song D., Pan K., Tariq A. et al.: PLoS One, 2016, 11(12), e0167037. https://doi.org/10.1371/journal.pone.0167037.
[21] Kumar M., Tamilarasan R.: Arabian J. Chem., 2013, 10, S1567. https://doi.org/10.1016/j.arabjc.2013.05.025
[22] Hsu N-H., Wang S-L., Liao Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
[23] Yang J., Yu M., Chen W.: J. Ind. Eng. Chem., 2015, 21, 414. https://doi.org/10.1016/j.jiec.2014.02.054
[24] Gueye M., Richardson Y., Kafack F., Blin J.: J. Environ. Chem. Eng., 2014, 2, 273. https://doi.org/10.1016/j.jece.2013.12.014
[25] Cronje K., Chetty K., Carsky M. et al.: Desalination, 2011, 275, 276. https://doi.org/10.1016/j.desal.2011.03.019
[26] Oliveira R., Hammer P., Guibal E. et al.: Chem. Eng. J., 2014, 239, 381. https://doi.org/10.1016/j.cej.2013.11.042
[27] The Gymnosperm Database 2018. https://www.conifers.org/cu/Thuja_occidentalis.php
[28] Singanan M., Peters E.: J. Environ. Chem. Eng., 2013, 1, 884. https://doi.org/10.1016/j.jece.2013.07.030
[29] Singanan M.: Science Asia, 2011, 37, 115. https://doi.org/10.2306/scienceasia1513-1874.2011.37.115
[30] Mengistie A., Siva Rao T., Prasada Rao A.: Global J. Sci. Frontier Res. Chem., 2012, 12, 5.
[31] Esposito A., Pagnanelli F., Lodi A. et al.: Hydrometallurgy, 2001, 60, 129. https://doi.org/10.1016/S0304-386X(00)00195-X
[32] Liu C., Liang X., Liu J. et al.: J. Colloid Interface Sci., 2017, 488, 294. https://doi.org/10.1016/j.jcis.2016.11.013
[33] Srivastava V., Mall I., Mishra I.: J. Hazard. Mater., 2006, B134, 257. https://doi.org/10.1016/j.jhazmat.2005.11.052
[34] Hsua N-H., Wanga S-L., Liaoa Y-H. et al.: J. Hazard. Mater., 2009, 171, 1066. https://doi.org/10.1016/j.jhazmat.2009.06.112
[35] Rangabhashiyam S., Selvaraju N.: J. Mol. Liq., 2017, 207, 39. https://doi.org/10.1016/j.molliq.2015.03.018
[36] Huang C-P., Wu M-H.: Water Res., 1977, 11, 673. https://doi.org/10.1016/0043-1354(77)90106-3
[37] Hamadi N., Chen X., Farid M., Lu M.: Chem. Eng. J., 2001, 84, 95. https://doi.org/10.1016/S1385-8947(01)00194-2
[38] GuptaV., Ali I., SalehT. et al.: Environ. Sci. Pollut. Res., 2013, 20, 1261. https://doi.org/10.1007/s11356-012-0950-9
[39] Rai M., Shahi G., Meena V. et al.: Res. Efficient Technol., 2016, 2, S63. https://doi.org/10.1016/j.reffit.2016.11.011
[40] Langmuir I.: J. Am. Chem. Soc., 1918, 40, 1361. https://doi.org/10.1021/ja02242a004
[41] Frendlich H.: J. Phys. Chem., 1906, 57, 385.
[42] Sujitha R., Ravindhranath K.: J. Fluorine Chem., 2017, 193, 58. https://doi.org/10.1016/j.jfluchem.2016.11.013
[43] Masoud M., El-Saraf W., Abdel-Halim A. et al.: Arabian J. Chem., 2016, 9, S1590. https://doi.org/10.1016/j.arabjc.2012.04.028
[44] Kilic M., Apaydin-Varol E., Pütün A.: J. Hazard. Mater., 2011, 189, 397. https://doi.org/10.1016/j.jhazmat.2011.02.051
[45] Dundar M., Nuhoglu C., Nuhoglu Y.: J. Hazard. Mater., 2008, 151, 86. https://doi.org/10.1016/j.jhazmat.2007.05.055
[46] Huang H., Tang L., Wu C.: Environ. Sci. Technol., 2003, 37, 4463. https://doi.org/10.1021/es034193c
[47] Abdel Ghani N., Hegazy A., El-Chaghaby G.: Int. J. Environ. Sci. Technol., 2009, 6, 243. https://doi.org/10.1007/BF03327628
[48] Chen Y., An D., Sun S. et al.: Materials, 2018, 11, 269. https://doi.org/10.3390/ma11020269
[49] Abdolali A., Ngo H., Guo W. et al.: Bioresour. Technol., 2015, 193, 477. https://doi.org/10.1016/j.biortech.2015.06.123
[50] Selvi K., Pattabi S., Kaadirvelu K.K.: Bioresour. Technol., 2001, 80, 87. https://doi.org/10.1016/S0960-8524(01)00068-2
[51] Anandkumar J., Mandal B.: J. Hazard. Mater., 2009, 168, 633. https://doi.org/10.1016/j.jhazmat.2009.02.136
[52] Garg U., Kaur M., Garg V., Sud D.: J. Hazard. Mater., 2007, 140, 60. https://doi.org/10.1016/j.jhazmat.2006.06.056
[53] Aloma I., Rodriguez I., Calero M., Blazquez G.: Desalin. Water Treat., 2014, 52, 5912. https://doi.org/10.1080/19443994.2013.812521
[54] Dakiky M., Khamis M., Manassra A., Mereb M.: Adv. Environ. Res., 2002, 6, 533. https://doi.org/10.1016/S1093-0191(01)00079-X
[55] Rangabhashiyam S., Anu N., Selvaraju N.: Res. J. Chem. Environ, 2014, 18, 30.