Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Chemical modification and characterization of boehmite particles

Witold Brostow and Tea Datashvili
DOI: 
https://doi.org/10.23939/chcht02.01.027
AttachmentSize
PDF icon full_text.pdf273.71 KB
Abstract: 
Polymerizable organic silane molecules 3-(trimethoxysilyl)propylmethacrylate (3MPS) and vinyltri(2-methoxyethoxy)silane (VTMES) have been introduced onto surfaces of high purity Boehmite (a commercial alumina) via hydroxyl groups on the oxides in order to obtain organic-inorganic hybrid “macromonomers”. Changes of surface characteristics have been determined using thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR). The influence of the type of silane used and modification conditions have been determined. Preheating was applied to some Boehmite samples; it leads to lower concentrations of –OH groups on the powder surface and the adsorption yields lower than in samples without preheating. Modification leads to surface hydrophobicity and thus reduces significantly water adsorption; in TGA we see desorption of water below 423 K only in un-modified Boehmite.
References: 

1. Rabello M.: Aditivação de Polimeros, Artliber, São Paulo 2000.

2. Brostow W. and Simões R.: J. Mater. Ed. 2005, 27, 19.
https://doi.org/10.1557/jmr.2004.19.3.851

3. Brostow W.; Deborde J.L.; Jaklewicz M. and Olszynski P.: J. Mater. Ed. 2003, 24, 119.

4. Mark H. F.: J Mater. Ed. 1990, 12, 65.
https://doi.org/10.1007/BF02923970

5. Brostow W.: editor; Failure of Plastics, Hanser, Munich-Vienna-New York, 1992.

6. D'Almeida L.M. and de Carvalho L.H.: J. Mater. Sci. 1998, 33, 2215.

7. Schwartz C.J. and Bahadur S.: Wear 2000, 237, 261.
https://doi.org/10.1016/S0043-1648(99)00345-2

8. Rong M.Z.; Zhang M.Q.; Zheng Y.X.; Zeng H.M.; Walter R. and Friedrich K.: Polymer 2001, 42, 167.
https://doi.org/10.1016/S0032-3861(00)00325-6

9. Rong M.Z.; Zhang M.Q.; Zheng Y.X.; Zeng H.M. and Friedrich K.: Polymer 2001, 42, 3301.
https://doi.org/10.1016/S0032-3861(00)00741-2

10. Brostow, W.; Kaselman M.; Mironi-Harpaz I.; Narkis M. and Peirce R.: Polymer 2005, 46, 5058.
https://doi.org/10.1016/j.polymer.2005.01.088

11. Brostow W.; Gorman B.P. and Olea-Mejia O.: Mater. Lett. 2007, 61, 1333.
https://doi.org/10.1016/j.matlet.2006.07.026

12. Zhao M. and Liu P.: Mater. Res. Innovat. 2007, 11, 32.

13. Pérez L.D.; Giraldo L.F.; Brostow W. and López B. L.: e-Polymers, 2007, 029.

14. Bakar M. and Skrzypek K.: Mater. Sci. - Medziagotyra 2007, 13, 39.

15. Bilyeu B.; Brostow W.; Chudej L.; Estevez M.; Hagg Lobland H. E.; Rodriguez J.R. and Vargas S.: Mater. Res. 16. Innovat. 2007, 11, 181.
https://doi.org/10.1179/143307507X246648

17. Giraldo L. E.; Brostow W.; Deveux E.; Lopez B. L. and Perez L. D.: J. Nanosci. Nanotech. 2008, 8, in press.
https://doi.org/10.1166/jnn.2008.092

18. Kopczynska A. and Ehrenstein G.W.: J. Mater. Ed. 2007, 29, 325.

19. Oosterling M.L.C.M.; Sein A. and Schouten A.J.: Polymer 1992, 33, 4394.
https://doi.org/10.1016/0032-3861(92)90286-6

20. Espiard P. and Guyot A.: Polymer 1995, 23, 4391.
https://doi.org/10.1016/0032-3861(95)96844-X

21. Liu Q.; Wijn J.R.D.; Groot K.D. and Blitterswijk C.A.V.: Biomaterials 1998, 19, 1067.
https://doi.org/10.1016/S0142-9612(98)00033-7

22. Tsubokawa N.; Shirai Y. and Hashimoto K.: Colloid & Polymer Sci. 1995, 273, 1049.
https://doi.org/10.1007/BF00657672

23. Tsubokawa N.; Kogure A. and Sone Y.: J. Polymer Sci. Chem. 1990, 28, 1923.
https://doi.org/10.1002/pola.1990.080280723

24. Webster O.W.: Science 1991, 251, 887.
https://doi.org/10.1126/science.251.4996.887

25. Plueddemann E.P.: Silane coupling agents, Plenum, New York, 1982.
https://doi.org/10.1007/978-1-4899-0342-6

26. Barboiu M.; Luca C.; Guizard C.; Hovnanian N.; Cot L. and Popescu G.: J. Membr. Sci. 1997, 129, 197.
https://doi.org/10.1002/jlac.199719970908

27. Haan D.,J. W.; Bogaert V. D.; Ponjee J. J. and Ven V. D.: J. Colloid & Interface Sci. 1986, 110, 591.
https://doi.org/10.1016/0021-9797(86)90411-X

28. Tsubokawa N.; Maruyama K.; Sone Y. and Shimomura M.: Polymer 1989, 21, 475.
https://doi.org/10.1295/polymj.21.475

29. Rong M.Z.; Ji Q.L.; Zhang M.Q. and Friedrich K.: Eur. Polymer J. 2002, 38, 1573.
https://doi.org/10.1016/S0014-3057(02)00037-X

30. Brostow W.; Datashvili T.; Huang B. and Too J.: Polymer Compos. 2007, 28, in print.

31. Brostow W.; Datashvili T. and Hackenberg K.P.: submitted to e-Polymers.

32. Bagwell R.B. and Messing G.L.: Key Eng. Mater. 1996, 115, 45.
https://doi.org/10.4028/www.scientific.net/KEM.115.45

33. Bokhimi X.; Toledo-Antonio J.A.; Guzman-Castillo M.L. and Hernandez-Beltran F.: J. Solid State Chem. 2001, 159, 32.
https://doi.org/10.1006/jssc.2001.9124

34. Gobichon A.E.; Rebours B. and Euzen P.: Mater. Sci. Forum 2001, 378 - 381, 523.
https://doi.org/10.4028/www.scientific.net/MSF.378-381.523

35. Lippens B.C. and de Boer J.H.: Acta Crystallogr. 1964, 17.
https://doi.org/10.1107/S0365110X64003267

36. Alphonse P. and Courty M.: Thermochim. Acta 2005, 425, 75.
https://doi.org/10.1016/j.tca.2004.06.009

37. Bilyeu B.; Brostow W. and Menard K.P.: J Mater. Ed. 2000, 22, 107.

38. Menard KP.: Ch. 8 in Performance of Plastics, Brostow, W.; editor, Hanser, Munich - Cincinnati, 2000.

39. Tsukada T.; Segawa H.; Yasumori A. and Oakada K.: J. Mater. Chem. 1999, 9, 549.
https://doi.org/10.1039/a806728g

40. Nguefack M.; Popa A.F.; Rossignol S. and Kappenstein C.: Phys. Chem. & Chem. Phys. 2003, 19, 4279.
https://doi.org/10.1039/B306170A

41. Abboud M.; Turner M.; Duguet E. and Fontanille M.: J. Mater. Chem. 1997, 7, 1527.
https://doi.org/10.1039/a700573c

42. Yem H.S.; Kim K.D.; Kim J.N.; Choa Y.-H. and Kim H.K.: J. Ind. Eng. Chem. 2007, 13, 644.