Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Catalytic Synthesis of Methyl Glycolate from Glyoxal Methanol Solution over Base Catalysts

Svitlana Levytska1, Artur Mylin1, Anatoliy Varvarin1
Affiliation: 
1 Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine 13, General Naumov St., Kyiv 03164, Ukraine s_levytska@ukr.net
DOI: 
https://doi.org/10.23939/chcht16.04.515
AttachmentSize
PDF icon full_text.pdf314.25 KB
Abstract: 
The process of obtaining methyl glycolate from a methanolic solution of glyoxal over solid basic catalysts based on mixed oxides of magnesium, zirconium, and aluminum has been studied. According to obtained results, the selectivity of the methyl glycolate formation increases with increasing the basicity of the catalyst. The most selective coprecipitated MgO-ZrO2 provides almost 100 % methyl glycolate yield. The supported MgO-ZrO2/Al2O3 gives to 95 % yield of methyl glycolate with the formation of the glyoxal dimethyl acetal as a by-product. This catalyst could be reused several consecutive cycles without the need for intermediate regeneration. Methyl glycolate in a high 93 % yield can be obtained at 453 K over this solid catalyst in flow mode, which may be of practical interest.
References: 

[1] Xu, Y.; Meh, A.; Yang, G.; Zhao, Y.; Chen, Q.; Li, Z.; Ma, X. Homogeneous Catalytic Kinetics of Methyl Glycolate Hydrolysis. Chem. Eng. Technol. 2016, 39 (5), 918-926. https://doi.org/10.1002/ceat.201500649
https://doi.org/10.1002/ceat.201500649

[2] Cotellessa, C.; Peris, K.; Chimenti, S. Glycolic Acid and Its Use in Dermatology. J. Eur. Acad. Dermatol. Venereol. 1995, 5 (3), 215-217. https://doi.org/10.1111/j.1468-3083.1995.tb00107.x
https://doi.org/10.1111/j.1468-3083.1995.tb00107.x

[3] Tang, Sh.-Ch.; Yang, J.-H. Dual Effects of Alpha-Hydroxy Acids on the Skin. Molecules 2018, 23 (4), 863. https://doi.org/10.3390/molecules23040863
https://doi.org/10.3390/molecules23040863

[4] De Clercq, R.; Makshina, E.; Sels, B.F.; Dusselier, M. Catalytic Gas-Phase Cyclization of Glycolate Esters: A Novel Route Toward Glycolide-Based Bioplastics. ChemCatChem 2018, 10 (24), 5649-5655. https://doi.org/10.1002/cctc.201801469
https://doi.org/10.1002/cctc.201801469

[5] Nair, L.S.; Laurencin, C.T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32 (8-9), 762-798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
https://doi.org/10.1016/j.progpolymsci.2007.05.017

[6] Yamane, K.; Sato, H.; Ichikawa, Y.; Sunagawa, K.; Shigaki, Y. Development of an Industrial Production Technology for High-Molecular-Weight Polyglycolic Acid. Polym. J. 2014, 46, 769-775. https://doi.org/10.1038/pj.2014.69
https://doi.org/10.1038/pj.2014.69

[7] Ginjupalli, K.; Shavi, G.V.; Averineni, R.K.; Bhat, M.; Udupa, N.; Nagaraja Upadhya, P. Poly(α-hydroxy acid) Based Polymers: A Review on Material and Degradation Aspects. Polym. Degrad. Stab. 2017, 144, 520-535. https://doi.org/10.1016/j.polymdegradstab.2017.08.024
https://doi.org/10.1016/j.polymdegradstab.2017.08.024

[8] Gädda, T.M.; Pirttimaa, M.M.; Koivistoinen, O.M.; Richard, P.; Penttilä, M.; Harlin, A. The Industrial Potential of Bio-Based Glycolic Acid and Polyglycolic Acid. Appita J. 2014, 67, 12. https://www.researchgate.net/publication/286496676

[9] Jem, K.J.; Tan, B. The Development and Challenges of Poly (lactic acid) and Poly (glycolic acid). Adv. Ind. Eng. Polym. Res. 2020, 3 (2), 60-70. https://doi.org/10.1016/j.aiepr.2020.01.002
https://doi.org/10.1016/j.aiepr.2020.01.002

[10] Yang, Sh.-B.; Chien, I.-L. Rigorous Design and Optimization of Methyl Glycolate Production Process through Reactive Distillation Combined with a Middle Dividing-Wall Column. Ind. Eng. Chem. Res. 2019, 58 (13), 5215-5227. https://doi.org/10.1021/acs.iecr.8b05665
https://doi.org/10.1021/acs.iecr.8b05665

[11] Sun, Y.; Wang, H.; Shen, J.; Liu, H.; Liu, Z. Highly Effective Synthesis of Methyl Glycolate with Heteropolyacids as Catalysts. Catal. Commun. 2009, 10 (5), 678-681. https://doi.org/10.1016/j.catcom.2008.11.015
https://doi.org/10.1016/j.catcom.2008.11.015

[12] Wang, B.; Xu, Q.; Song, H.; Xu, G. Synthesis of Methyl Glycolate by Hydrogenation of Dimethyl Oxalate over Cu-Ag/SiO2 Catalyst. J. Nat. Gas Chem. 2007, 16 (1), 78-80. https://doi.org/10.1016/S1003-9953(07)60030-9
https://doi.org/10.1016/S1003-9953(07)60030-9

[13] Yin, A.; Wen, C.; Dai, W.-L.; Fan, K. Ag/MCM-41 as a Highly Efficient Mesostructured Catalyst for the Chemoselective Synthesis of Methyl Glycolate and Ethylene Glycol. Appl. Catal. B 2011, 108-109, 90-99. https://doi.org/10.1016/j.apcatb.2011.08.013
https://doi.org/10.1016/j.apcatb.2011.08.013

[14] Ye, R.-P.; Lin, L.; Wang, L.-C.; Ding, D.; Zhou, Z.; Pan, P.; Xu, Z.; Liu, J.; Adidharma, H.; Radosz, M. Perspectives on the Active Sites and Catalyst Design for the Hydrogenation of Dimethyl Oxalate. ACS Catal. 2020, 10 (8), 4465-4490. https://doi.org/10.1021/acscatal.9b05477
https://doi.org/10.1021/acscatal.9b05477

[15] Hayashi, T.; Inagaki, T.; Itayama, N.; Baba, H. Selective Oxidation of Alcohol over Supported Gold Catalysts: Methyl Glycolate Formation from Ethylene Glycol and Methanol. Catal. Today 2006, 117 (1-3), 210-213. https://doi.org/10.1016/j.cattod.2006.06.045
https://doi.org/10.1016/j.cattod.2006.06.045

[16] Ke, Y.-H.; Qin, X.-X.; Liu, C.-L.; Yang, R.-Z.; Dong, W.-S. Oxidative Esterification of Ethylene Glycol in Methanol to Form Methyl Glycolate over Supported Au Catalysts. Catal. Sci. Technol. 2014, 4, 3141-3150. https://doi.org/10.1039/C4CY00556B
https://doi.org/10.1039/C4CY00556B

[17] Mattioda, G., Blanc, A. Glyoxal. In Ullmann's encyclopedia of industrial chemistry; Vol 17; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2012; pp 83-87.
https://doi.org/10.1002/14356007.a12_491.pub2

[18] Balat, M.; Balat, M.; Kirtay, E.; Balat, H. Main Routes for the Thermo-Conversion of Biomass into Fuels and Chemicals. Part 1: Pyrolysis Systems. Energy Convers. Manag. 2009, 50 (12), 3147-3157. https://doi.org/10.1016/j.enconman.2009.08.014
https://doi.org/10.1016/j.enconman.2009.08.014

[19] Kiyoura, T.; Kogure, Y. Synthesis of Hydroxyacetic Acid and its Esters from Glyoxal Catalyzed by Multivalent Metal Ions. Appl. Catal. A-Gen. 1997, 156 (1), 97-104. https://doi.org/10.1016/S0926-860X(96)00414-0
https://doi.org/10.1016/S0926-860X(96)00414-0

[20] Dapsens, P.Y.; Mondelli, C.; Kusema, B.T., Verel, R.; Pérez-Ramírez, J. A Continuous Process for Glyoxal Valorisation Using Tailored Lewis-Acid Zeolite Catalysts. Green Chem. 2014, 16, 1176-1186. https://doi.org/10.1039/C3GC42353K
https://doi.org/10.1039/C3GC42353K

[21] Levytska, S.; Mylin, A. Catalytic Synthesis of Glycolic Acid and its Methyl Ester from Glyoxal. Ukr. Chem. J. 2020, 86 (12), 134-145. https://doi.org/10.33609/2708-129X.86.12.2020.134-145
https://doi.org/10.33609/2708-129X.86.12.2020.134-145

[22] Tanabe, K. Solid Acid and Bases. Their Catalytic Properties; Academic Press: New York-London, 1970.

[23] Nenitescu, C.D. Organicheskaya khimiya; vol. I; Inostr. Lit.: Moskow, 1963.