Bemgba Nyakuma1, Olagoke Oladokun1
1 Institute of Future Energy, Centre for Hydrogen Energy, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
PDF icon full_text.pdf161.23 KB
The study seeks to proffer practical solutions to the sustainable waste management of Acacia mangium leaves (AML) and explore its solid biofuel (SBF) potential through thermochemical valorization. Consequently, the physicochemical, thermal and kinetic properties of AML were examined using elemental, proximate, bomb calorimetric, thermogravimetric (TG-DTG), and Kissinger kinetic analyses. The results revealed AML possesses high content of carbon, volatile matter, and fixed carbon but low moisture and ash content. The heating value of AML was compared to that of A. mangium wood. Furthermore, thermal decomposition was strongly influenced by temperature and heating rate, although results indicate higher temperatures are required for complete conversion of AML. The Kissinger kinetic model revealed activation energy E and frequency factor A for AML. The results indicate AML possesses good SBF qualities for future bioenergy applications.

[1] Orwa C., Mutua A., Kindt R. et al.: Acacia mangium. Agroforestree database: a tree reference and selection guide version 4.0,
[2] Mat S., Ab-Shukor N.-A., Hamzah M.-Z. et al.: J. Agricult. Sci., 2009, 1, 74.
[3] Ilstedt U., Malmer A., Nordgren A., Liau P.: Forest Ecol. Manag., 2004, 194, 215.
[4] Tsai L.: J. Trop. Ecol., 1988, 4, 293.
[5] Cetinkol O., Smith-Moritz A., Cheng G. et al.: PLoS One, 2012, 7, e52820.
[6] Nasi R., Meijaard E., Applegate G., Moore P.: Unasylva, 2002, 53, 209.
[7] Page S., Siegert F., Rieley J. et al.: Nature, 2002, 420, 61.
[8] Herawati H., Santoso H.: Forest Policy Econom., 2011, 13, 227.
[9] Brostow W., Menard K., Menard N.: Chem. Chem. Technol., 2009, 3, 173.
[10] Nyakuma B.: Environ. Climate Technol., 2015, 15, 77.
[11] Magdziarz A., Werle S.: Waste Manag., 2014, 34, 174.
[12] Viana H., Vega-Nieva D., Torres L. et al.: Fuel, 2012, 102, 737.
[13] Serapiglia M., Cameron K., Stipanovic A., Smart L.: Appl. Biochem. Biotech., 2008, 145, 3.
[14] Johari A., Nyakuma B., Ahmad A. et al.: Appl. Mech. Mat., 2014, 493, 3.
[15] Brostow W., Datashvili T.: Chem. Chem. Technol., 2008, 2, 27.
[16] Nyakuma B., Mazangi M., Johari A. et al.: 2014. MATEC Web of Conferences. EDP Sciences 2014.
[17] Park J.-K., Lee W.-B., Park Y.-S. et al.: Chem. Chem. Technol., 2013, 7, 405.
[18] Ramos M., Beltran A., Valdes A. et al.: Chem. Chem. Technol., 2013, 7, 295.
[19] Nyakuma B., Johari A., Ahmad A., Abdullah T.: Jurnal Teknologi, 2014, 67, 3.
[20] Polat S., Apaydin-Varol E., Putun A.: J. Selcuk Univ. Nat. Appl. Sci., 2013, 420.
[21] Basu P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Academic Press 2013.
[22] Ledakowicz S., Stolarek P.: Chem. Pap., 2002, 56, 378.
[23] Basu P.: Combustion and Gasification in Fluidized Beds. CRC Press 2006.
[24] Acıkalin K.: J. Therm. Anal. Calorim., 2011, 105, 145.
[25] Nyakuma B., Johari A., Ahmad A.: J. Appl. Sci., 2012, 12, 2527.
[26] Slopiecka K., Bartocci P., Fantozzi F.: Appl. Energ., 2012, 97, 491.
[27] Oladokun O., Ahmad A., Abdullah T. et al.: Chem. Eng. Transact., 2015, 45, 919.
[28] Damartzis T., Vamvuka D., Sfakiotakis S., Zabaniotou A.: Biores. Technol., 2011, 102, 6230.
[29] Nyakuma B., Ahmad A., Johari A. et al.: Chem. Eng. Transact., 2015, 45, 1327.
[30] Joshi Y., Di Marcello M., de Jong W.: J. Anal. Appl. Pyrol., 2015, 115, 353.