Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

BIOFUEL CHARACTERIZATION AND PYROLYSIS KINETICS OF ACACIA MANGIUM

Bemgba Nyakuma1, Olagoke Oladokun1
Affiliation: 
1 Institute of Future Energy, Centre for Hydrogen Energy, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
DOI: 
https://doi.org/10.23939/chcht11.03.392
AttachmentSize
PDF icon full_text.pdf161.23 KB
Abstract: 
The study seeks to proffer practical solutions to the sustainable waste management of Acacia mangium leaves (AML) and explore its solid biofuel (SBF) potential through thermochemical valorization. Consequently, the physicochemical, thermal and kinetic properties of AML were examined using elemental, proximate, bomb calorimetric, thermogravimetric (TG-DTG), and Kissinger kinetic analyses. The results revealed AML possesses high content of carbon, volatile matter, and fixed carbon but low moisture and ash content. The heating value of AML was compared to that of A. mangium wood. Furthermore, thermal decomposition was strongly influenced by temperature and heating rate, although results indicate higher temperatures are required for complete conversion of AML. The Kissinger kinetic model revealed activation energy E and frequency factor A for AML. The results indicate AML possesses good SBF qualities for future bioenergy applications.
References: 

[1] Orwa C., Mutua A., Kindt R. et al.: Acacia mangium. Agroforestree database: a tree reference and selection guide version 4.0, http://bit.ly/1NiAVfF.

[2] Mat S., Ab-Shukor N.-A., Hamzah M.-Z. et al.: J. Agricult. Sci., 2009, 1, 74.

[3] Ilstedt U., Malmer A., Nordgren A., Liau P.: Forest Ecol. Manag., 2004, 194, 215. https://doi.org/10.1016/j.foreco.2004.02.032
https://doi.org/10.1016/j.foreco.2004.02.032

[4] Tsai L.: J. Trop. Ecol., 1988, 4, 293. https://doi.org/10.1017/S0266467400002856
https://doi.org/10.1017/S0266467400002856

[5] Cetinkol O., Smith-Moritz A., Cheng G. et al.: PLoS One, 2012, 7, e52820. https://doi.org/10.1371/journal.pone.0052820
https://doi.org/10.1371/journal.pone.0052820

[6] Nasi R., Meijaard E., Applegate G., Moore P.: Unasylva, 2002, 53, 209.

[7] Page S., Siegert F., Rieley J. et al.: Nature, 2002, 420, 61. https://doi.org/10.1038/nature01131
https://doi.org/10.1038/nature01131

[8] Herawati H., Santoso H.: Forest Policy Econom., 2011, 13, 227. https://doi.org/10.1016/j.forpol.2011.02.006
https://doi.org/10.1016/j.forpol.2011.02.006

[9] Brostow W., Menard K., Menard N.: Chem. Chem. Technol., 2009, 3, 173.

[10] Nyakuma B.: Environ. Climate Technol., 2015, 15, 77.

[11] Magdziarz A., Werle S.: Waste Manag., 2014, 34, 174. https://doi.org/10.1016/j.wasman.2013.10.033
https://doi.org/10.1016/j.wasman.2013.10.033

[12] Viana H., Vega-Nieva D., Torres L. et al.: Fuel, 2012, 102, 737. https://doi.org/10.1016/j.fuel.2012.06.035
https://doi.org/10.1016/j.fuel.2012.06.035

[13] Serapiglia M., Cameron K., Stipanovic A., Smart L.: Appl. Biochem. Biotech., 2008, 145, 3. https://doi.org/10.1007/s12010-007-8061-7
https://doi.org/10.1007/s12010-007-8061-7

[14] Johari A., Nyakuma B., Ahmad A. et al.: Appl. Mech. Mat., 2014, 493, 3.

[15] Brostow W., Datashvili T.: Chem. Chem. Technol., 2008, 2, 27.

[16] Nyakuma B., Mazangi M., Johari A. et al.: 2014. MATEC Web of Conferences. EDP Sciences 2014.

[17] Park J.-K., Lee W.-B., Park Y.-S. et al.: Chem. Chem. Technol., 2013, 7, 405.

[18] Ramos M., Beltran A., Valdes A. et al.: Chem. Chem. Technol., 2013, 7, 295.

[19] Nyakuma B., Johari A., Ahmad A., Abdullah T.: Jurnal Teknologi, 2014, 67, 3. https://doi.org/10.11113/jt.v67.2768
https://doi.org/10.11113/jt.v67.2768

[20] Polat S., Apaydin-Varol E., Putun A.: J. Selcuk Univ. Nat. Appl. Sci., 2013, 420.

[21] Basu P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Academic Press 2013.

[22] Ledakowicz S., Stolarek P.: Chem. Pap., 2002, 56, 378.

[23] Basu P.: Combustion and Gasification in Fluidized Beds. CRC Press 2006. https://doi.org/10.1201/9781420005158
https://doi.org/10.1201/9781420005158

[24] Acıkalin K.: J. Therm. Anal. Calorim., 2011, 105, 145. https://doi.org/10.1007/s10973-010-1267-x
https://doi.org/10.1007/s10973-010-1267-x

[25] Nyakuma B., Johari A., Ahmad A.: J. Appl. Sci., 2012, 12, 2527. https://doi.org/10.3923/jas.2012.2527.2533
https://doi.org/10.3923/jas.2012.2527.2533

[26] Slopiecka K., Bartocci P., Fantozzi F.: Appl. Energ., 2012, 97, 491. https://doi.org/10.1016/j.apenergy.2011.12.056
https://doi.org/10.1016/j.apenergy.2011.12.056

[27] Oladokun O., Ahmad A., Abdullah T. et al.: Chem. Eng. Transact., 2015, 45, 919. https://doi.org/10.3303/CET1545154

[28] Damartzis T., Vamvuka D., Sfakiotakis S., Zabaniotou A.: Biores. Technol., 2011, 102, 6230. https://doi.org/10.1016/j.biortech.2011.02.060
https://doi.org/10.1016/j.biortech.2011.02.060

[29] Nyakuma B., Ahmad A., Johari A. et al.: Chem. Eng. Transact., 2015, 45, 1327. https://doi.org/10.3303/CET1545222

[30] Joshi Y., Di Marcello M., de Jong W.: J. Anal. Appl. Pyrol., 2015, 115, 353. https://doi.org/10.1016/j.jaap.2015.08.014
https://doi.org/10.1016/j.jaap.2015.08.014