Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Bio-Sorbent Derived from Annona Squamosa for the Removal of Methyl Red Dye in Polluted Waters: A Study on Adsorption Potential

Kokkiligadda Venkata Ramana1, KurmarayuniChandra Mohan1, KuntaRavindhranath2, Bollikolla Hari Babu1
Affiliation: 
1 Department of Chemistry, Acharya Nagarjuna University, Guntur-522510, AP-India; 2 Department of Chemistry, KL University, Vaddeswaram, Guntur Dist., AP-India; dr.b.haribabu@gmail.com
DOI: 
https://doi.org/10.23939/chcht16.02.274
AttachmentSize
PDF icon full_text.pdf316.44 KB
Abstract: 
Sorbent got from leaves and barks of Annona squamosa has been investigated for its sorption capacity towards Methyl Red (MR) utilizing artificially arranged recreated squander waters. Different components influencing adsorption, viz., initial color concentration, contact time, adsorbent dosage, along with the impact of temperature were assessed. The equilibrium of adsorption was demonstrated by Freundlich; Langmuir, Temkin, and Dubinin-Radushkevich isotherms. Pseudo-first order, pseudo-second order, Weber and Morrish intraparticle diffusion, Bangham's pore dispersion and Elovich equations were applied in order to distinguish the rate and kinetics of adsorption progression. Interference of a five-fold abundance of regular anions and cations present in common waters, have been examined. Cation like Ca2+, Mg2+ and Cu2+ have showed some impedance, however, Fe2+ and Zn2+ have synergistically maintained the greatest extraction of the MR. The methods developed were effectively applied to some effluent. The results of experimental data were found appropriate to the pseudo-first order kinetic model. Correlation coefficient (R2) and dimensionless division or separation factor (RL) values have affirmed that adsorption obeys Langmuir adsorption showing monolayer development.
References: 

[1] Cationic Dyes from Water. J. Colloid Interf. Sci.2005, 281, 49-55. https://doi.org/10.1016/j.jcis.2004.08.076
https://doi.org/10.1016/j.jcis.2004.08.076

[2] Bhattacharyya, K.; Sharma A. Kinetics and Thermodynamics of Methylene Blue Adsorption on Neem Leaf Powder. Dyes Pigm.2005, 65, 51-59. https://doi.org/10.1016/j.dyepig.2004.06.016
https://doi.org/10.1016/j.dyepig.2004.06.016

[3] Robinson, T.; Chandran, B.; Nigam, P. Studies on the Production of Enzymes by White-Rot Fungi for the Decolorization of Textile Dyes. Enzyme Microb. Technol.2001, 29, 575-579. https://doi.org/10.1016/S0141-0229(01)00430-6
https://doi.org/10.1016/S0141-0229(01)00430-6

[4] Shah, V.; Nerud, F. Lignin Degrading System of White-Rot Fungi and its Exploitation for Dye Decolorization, Can. J. Microbiol.2002, 48, 857-870. https://doi.org/10.1139/w02-090
https://doi.org/10.1139/w02-090

[5] Josefa, S.Y.M.; De Oliveria, E. Heavy Metals Removal in Industrial Effluents by Sequential Adsorption Treatment. Adv. Environ. Research.2003, 7, 263-272. https://doi.org/10.1016/S1093-0191(01)00128-9
https://doi.org/10.1016/S1093-0191(01)00128-9

[6] Malik, D.J.; Strelko, V.J.; Streat, M.; Puziy, A.M. Characterization of Novel Modified Active Carbons and Marinealgal Biomass for the Selective Adsorption of Lead. Water Research.2002, 369, 1527-1538. https://doi.org/10.1016/S0043-1354(01)00348-7
https://doi.org/10.1016/S0043-1354(01)00348-7

[7] Arslanoglue, F.N.; Kar, F.; Arslan, N. Adsorption of Dark Colored Compounds from Peach Pulp by Using Powdered Activated Carbon. J. Food. Eng.2005, 71, 156-163. https://doi.org/10.1016/j.jfoodeng.2004.10.029
https://doi.org/10.1016/j.jfoodeng.2004.10.029

[8] Senthilkumaar, S.; Varadarajab, P.R.; Porkodi K.; Subbhuraam, C.V. Adsorption of Methylene Blue onto Jute Fiber Carbon: Kinetics and Equilibrium Studies. J. Colloid. Inter. Sci.2005, 284, 78-82. https://doi.org/10.1016/j.jcis.2004.09.027
https://doi.org/10.1016/j.jcis.2004.09.027

[9] Laszlo, J.A. Preparing an Ion Exchange Resin from Sugarcane Bagasse to Remove Reactive Dye from Wastewater. Text. Chem. Color.1996, 28, 13-17.

[10] Gemea, A.H.; Mansour, I.A.; El-Sharkawy, R.G.; Zaki, A.B. Kinetics and Mechanism of the Heterogeneous Catalyzed Oxidative Degradation of Indigo Carmine. J. Mol. Catal. Chem.2003, 193,109-120. https://doi.org/10.1016/S1381-1169(02)00477-6
https://doi.org/10.1016/S1381-1169(02)00477-6

[11] Grimau, V.L.; Gutierrez, M.C. Decolorization of Simulated Reactive Dyebath Effluents by Electrochemical Oxidation Assisted by UV Light. Chemosphere. 2006, 62, 106-112. https://doi.org/10.1016/j.chemosphere.2005.03.076
https://doi.org/10.1016/j.chemosphere.2005.03.076

[12] Hachem, C.; Bocquillon F.; Zahraa, O.; Bouchy, M. Decolorization of Textil Industry Wastewater by the Photocatalytic Degradation Process. Dyes. Pigm.2001, 49, 117-125. https://doi.org/10.1016/S0143-7208(01)00014-6
https://doi.org/10.1016/S0143-7208(01)00014-6

[13] Cisneros, R.L.; Espinoza, A.G.; Litter, M.I. Photodegradation of an Azo Dye of the Textile Industry. Chemosphere. 2002, 48, 393-399. https://doi.org/10.1016/S0045-6535(02)00117-0
https://doi.org/10.1016/S0045-6535(02)00117-0

[14] Gupta V. K.; Suhas. Application of Low-Cost Adsorbents for Dye Removal - A Review. J. Environ. Manage. 2009, 90, 2313-2342. https://doi.org/10.1016/j.jenvman.2008.11.017
https://doi.org/10.1016/j.jenvman.2008.11.017

[15] Srivastava, V.; Mall, I.D.; Mishra, I.M. Equilibrium Modelling of Single and Binary Adsorption of Cadmium and Nickel onto Bagasse Fly Ash. Chem. Eng. J.2006, 117, 79-91. https://doi.org/10.1016/j.cej.2005.11.021
https://doi.org/10.1016/j.cej.2005.11.021

[16] Trivedy, R.K. Pollution Management in Industries,2nd ed.; Karad (India): Environmental Publications, 1995.

[17] Kiely, G. Environmental Engineering; McGraw-hall International Editions, 1998.

[18] Tchobanoglous, G.; Burton, F.L.; Stensel, D.H. Wastewater Engineering: Treatment and Reuse, 4th ed; McGraw Hill, 2003.

[19] APHA, Standard methods for the Examination of Water and Waste water. American Public Health Association, Washington DC, 1985.

[20] Ramana, K.V.; Latha, K.S.; Ravindranath, K.; Babu, B.H. Methyl Red Dye Removal Using New Bio-Sorbents Derived from Hycinth and Tinosporacardifolia Plants from Waste Waters, Rasayan J. Chem. 2017, 10, 349-362.

[21] Srinivasa Reddy, B.; Venkata Ramana, K.; Ravindranath, K. Extraction of Methylene Blue Dye from Polluted Waters Using Some Bio-sorbents. Int. J. Appl. Biol.Pharm.2012, 3 (4), 215-224.

[22] Freundlich, H.M.F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57, 385-470. https://doi.org/10.1515/zpch-1907-5723
https://doi.org/10.1515/zpch-1907-5723

[23] Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc., 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004
https://doi.org/10.1021/ja02242a004

[24] Temkin, M.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physicochimica URSS.1940, 12, 217-222.

[25] Dubinin, M.M.; Radushkevich, L.V. The Equation of the Characteristic Curve of Activated Charcoal. Proc. Natl. Acad. Sci., Phys. Chem. Section. 1947, 55, 331.

[26] Hall, K. R.; Eagleton, L. C.; Acrivos A.; Vermeulen, T. Pore and Solid Diffusion Kinetics in Fixed Bed Adsorption under Constant Pattern Conditions. Ind. Eng. Chem. Fundam.1966, 5, 212-223. https://doi.org/10.1021/i160018a011
https://doi.org/10.1021/i160018a011

[27] Sari. I.P.; Simarani, K. Comparative Static and Shaking Culture of Metabolite Derived from Methyl Red Degradation by Lysinibacillusfusiformis Strain W1B6. R. Soc. Open Sci. 2019, 6, 190152. https://doi.org/10.1098/rsos.190152
https://doi.org/10.1098/rsos.190152

[28] Ajaz, M.; Rehman, A.; Khan, Z.; Nisar M.A.; Hussain S. Degradation of Azo Dyes by Alcaligenesaquatilis 3c and its Potential Use in the Wastewater Treatment. AMB Expr.2019, 9, 64. https://doi.org/10.1186/s13568-019-0788-3
https://doi.org/10.1186/s13568-019-0788-3

[29] Kpilraj, N.; Keerthanan, S.; Sithambaresan, M. Natural Plant Extracts as Acid-Base Indicator and Determination of Their Pka Value. J. Chem. 2019, 2019, Article ID 2031342.https://doi.org/10.1155/2019/2031342
https://doi.org/10.1155/2019/2031342

[30] Hameed, B.H. Evaluation of Papaya Seeds as a Novel Non-Conventional Low-Cost Adsorbent for Removal of Methylene Blue. J. Hazard. Mater., 2009, 162, 939-944. https://doi.org/10.1016/j.jhazmat.2008.05.120
https://doi.org/10.1016/j.jhazmat.2008.05.120

[31] Nunes, A.; Franca, S.A.; Olievera, L.S. Activated Carbon from Waste Biomass: An alternative Use for Biodiesel Production Solid Residues. Biores. Technol.2009, 100, 1786-1792. https://doi.org/10.1016/j.biortech.2008.09.032
https://doi.org/10.1016/j.biortech.2008.09.032

[32] Onyango, M.S.; Kojima, Y. Aoyi, O. Bernardo, E.C.; Matsuda, H.J. Adsorption Equilibrium Modeling and Solution Chemistry Dependence of Fluoride Removal from Water by Trivalent-Cation-Exchanged Zeolite F-9. Colloid Interface Sci.2004, 279, 341-350. https://doi.org/10.1016/j.jcis.2004.06.038
https://doi.org/10.1016/j.jcis.2004.06.038

[33] Jain, M.; Garg, V.K.; Kadirvelu, K. Chromium(VI) Removal from Aqueous Solution, Using Sunflower Stem Waste. J. Hazard. Mater.2008, 162, 365-372. https://doi.org/10.1016/j.jhazmat.2008.05.048
https://doi.org/10.1016/j.jhazmat.2008.05.048

[34] Atkins, P.; de Paulo J. Physical Chemistry, 8th ed.; Oxford University Press, 2006.

[35] Yuh-Shan, H. Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions. Scientometrics. 2004, 59, 171-177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf
https://doi.org/10.1023/B:SCIE.0000013305.99473.cf

[36] Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem.1999, 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
https://doi.org/10.1016/S0032-9592(98)00112-5

[37] Ho, Y.S.; Ng, J.C.Y.; McKay, G. Kinetics of Pollutant Sorption by Biosorbents: Review. Sep.Purif. Methods. 2000, 29,189-232. https://doi.org/10.1081/SPM-100100009
https://doi.org/10.1081/SPM-100100009

[38] Weber Jr., W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution, J. Sanit. Eng. Div.1963, 89, 31-59. https://doi.org/10.1061/JSEDAI.0000430
https://doi.org/10.1061/JSEDAI.0000430

[39] Aharoni, C.; Ungarish, M. Kinetics of Activated Chemisorption. Part 2. - Theoretical Models, J.Chem. Soc., Faraday Trans. 1. 1977,73, 456-464. https://doi.org/10.1039/f19777300456
https://doi.org/10.1039/f19777300456

[40] Ozacar, M.; Sengil, V. A Kinetic Study of Metal Complex Dye Sorption onto Pine Sawdust. Process Biochem. 2005, 40, 565-572. https://doi.org/10.1016/j.procbio.2004.01.032
https://doi.org/10.1016/j.procbio.2004.01.032

[41] Gerente C., Lee, V.K.C.; Le Cloirec, P.; McKay, G. Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption - Mechanisms and Models Review. Crit. Rev. Environ. Sci. Technol.2007, 37, 41-127. https://doi.org/10.1080/10643380600729089
https://doi.org/10.1080/10643380600729089

[42] Alagumuthu, G.; Rajan, M. Monitoring of Fluoride Concentration in Ground Water of Kadayam Block of Tirunelveli District, India. Rasayan J. Chem.2008, 4, 757-765.

[43] Karthikeyan, G.; Siva Ilango S. Fluoride Sorption Using Morringa Indica-Based Activated Carbon. Iran J. Environ. Health. Sci. Eng.2007, 4, 21-28.

[44] Sakthi S.M.; Rengaraj, V. Kinetics and Equilibrium Adsorption Study of Lead(II) onto Activated Carbon Prepared from Coconut Shell. J. Colloid. Interface Sci.2004, 279, 307-313. https://doi.org/10.1016/j.jcis.2004.06.042
https://doi.org/10.1016/j.jcis.2004.06.042

[45] Venkata Ramana, K.;Swarna Latha, K.; Ravindranath, K.; Hari Babu, B. Methyl Red Dye Removal Using New Bio-Sorbents Derived from Hyacinth and Tinospora Cordifolia Plants from Waste Waters. Rasayan J. Chem.2017, 10, 349-362.https://doi.org/10.7324/RJC.2017.1021537
https://doi.org/10.7324/RJC.2017.1021537

[46] Viswanathan, N.; Meenakshi, S. Enriched Fluoride Sorption Using Alumina/Chitosan Composite. J. Hazard. Mater.2010, 178, 226-232. https://doi.org/10.1016/j.jhazmat.2010.01.067
https://doi.org/10.1016/j.jhazmat.2010.01.067

[47] Bouberka, Z.; Kacha, S.; Kameche M.; Elmaleh, S.; Derriche, Z. J. Hazard. Mater.2005, 119, 117-124. https://doi.org/10.1016/j.jhazmat.2004.11.026
https://doi.org/10.1016/j.jhazmat.2004.11.026

[48] Sairam Sundaram, C.; Viswanathan, N.; Meenakshi S. J. Hazard. Mater. 2009, 163, 618-624. https://doi.org/10.1016/j.jhazmat.2008.07.009
https://doi.org/10.1016/j.jhazmat.2008.07.009

[49] Chaturvedi, A.K.; Pathak, K.C.; Singh, V.N. Appl. Clay Sci. 1988, 3, 337-346. https://doi.org/10.1016/0169-1317(88)90024-5
https://doi.org/10.1016/0169-1317(88)90024-5